分析 分点F在BD上和点F在AC上两种情况考虑:①当点F在BD上时,设正方形ABCD的边长为2a,根据正方形的性质可得出AO和AF的长,在通过解直角三角形可得出∠OAF=60°,进而可得出α的值;②由点C、A、F三点共线,可得出B、A、E三点共线,由此得出∠BAE=180°.综上即可得出结论.
解答 解:依照题意画出图形,如图所示.
①当点F在BD上时:令AC、BD的交点为O,设正方形ABCD的边长为2a,
则AC=AF=2$\sqrt{2}$a,AO=$\frac{1}{2}$AC=$\sqrt{2}$a.
∵四边形ABCD为正方形,
∴AC⊥BD,∠BAC=∠DAC=∠EAF=45°,
∴∠AOF=90°.
在Rt△AOF中,AO=$\sqrt{2}$a,AF=2$\sqrt{2}$a,
∴cos∠OAF=$\frac{AO}{AF}$=$\frac{1}{2}$,
∴∠OAF=60°,
∴α=∠OAF=60°或α=360°-∠OAF=300°;
②当点F在AC上时,
∵C、A、F三点共线,∠EAF=∠BAC=45°,
∴B、A、E三点共线,
∴α=∠BAE=180°.
综上可知:当正方形的顶点F落在正方形的对角线AC或BD所在直线上时,α=60°或180°.
故答案为:60°或180°或300°.
点评 本题考查了旋转的性质以及正方形的性质,解题的关键是分点F在BD上和点F在AC上两种情况考虑.本题属于中档题,难度不大,解决该题型题目时,利用旋转的性质找出相等的边角关系是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | DE∥AB | B. | ∠D=∠A | C. | AC=DF | D. | ∠D=∠DEF |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com