精英家教网 > 初中数学 > 题目详情
25、附加题:如图所示,已知,△ABC内接于⊙O,AB为直径,∠CAE=∠B.
求证:AE与⊙O相切于点A.
分析:要证明AE与⊙O相切于点A,即证明∠BAE=90°,由AB为直径,得到∠ACB=90°,即∠BAC+∠B=90,又∠CAE=∠B,所以∠BAC+∠CAE=90°.
解答:证明:∵AB为直径,
∴∠ACB=90°,
∴∠BAC+∠B=90,
又∵∠CAE=∠B,
∴∠BAC+∠CAE=90°,
即∠BAE=90°,
所以AE与⊙O相切于点A.
点评:本题考查了圆的切线的判定方法.若直线与圆有唯一的公共点,则此直线是圆的切线;若圆心到直线的距离等于圆的半径,则此直线是圆的切线;经过半径的外端点与半径垂直的直线是圆的切线.当已知直线过圆上一点,要证明它是圆的切线,则要连接圆心和这个点,证明这个连线与已知直线垂直即可;当没告诉直线过圆上一点,要证明它是圆的切线,则要过圆心作直线的垂线,证明垂线段等于圆的半径.也考查了圆的直径所对的圆周角为90度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

附加题:如图所示,已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
(1)此桥拱线所在抛物线的解析式.
(2)桥边有一浮在水面部分高4m,最宽处12
2
m的鱼船,试探索此船能否开到桥下?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

附加题:如图所示,已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
(1)此桥拱线所在抛物线的解析式.
(2)桥边有一浮在水面部分高4m,最宽处12数学公式m的鱼船,试探索此船能否开到桥下?说明理由.作业宝

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

附加题:如图所示,已知,△ABC内接于⊙O,AB为直径,∠CAE=∠B.
求证:AE与⊙O相切于点A.

查看答案和解析>>

科目:初中数学 来源:2009-2010学年云南省普洱市墨江县九年级(上)期末数学试卷(解析版) 题型:解答题

附加题:如图所示,已知,△ABC内接于⊙O,AB为直径,∠CAE=∠B.
求证:AE与⊙O相切于点A.

查看答案和解析>>

同步练习册答案