分析 取点N关于AD的对称点E,由轴对称图形的性质可知MN=ME,从而得到CM+MN=CM+ME,当点C、M、E在一条直线上且CE⊥AB时,CM+MN有最小值,然后证明△ABC为直角三角形,最后利用面积法求得CE的值即可.
解答 解:取点N关于AD的对称点E.
∵AD平分∠BAC,
∴点E在AB上.
∵点N与点D关于AD对称,
∴MN=ME.
∴CM+MN=CM+ME.
当CE⊥AB时,CE有最小值,即CM+MN有最小值.
在△ABC中,AB=5,BC=3,CA=4,
∴△ABC为直角三角形.
∴AC•BC=AB•CE,即5CE=3×4,解得CE=2.4.
故答案为:2.4.
点评 本题主要考查的是轴对称-路径最短问题,解答本题主要应用了轴对称图形的性质、垂线段最短的性质,将CM+MN转化为CE的长是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 20厘米 | B. | 8π厘米 | C. | 7π厘米 | D. | 5π厘米 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com