9£®ÒÑÖªµãA£¨-1£¬1£©¡¢B£¨4£¬6£©ÔÚÅ×ÎïÏßy=ax2+bxÉÏ
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Èçͼ1£¬µãFµÄ×ø±êΪ£¨0£¬m£©£¨m£¾2£©£¬Ö±ÏßAF½»Å×ÎïÏßÓÚÁíÒ»µãG£¬¹ýµãG×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪH£®ÉèÅ×ÎïÏßÓëxÖáµÄÕý°ëÖá½»ÓÚµãE£¬Á¬½ÓFH¡¢AE£¬ÇóÖ¤£ºFH¡ÎAE£»
£¨3£©Èçͼ2£¬Ö±ÏßAB·Ö±ð½»xÖá¡¢yÖáÓÚC¡¢DÁ½µã£®µãP´ÓµãC³ö·¢£¬ÑØÉäÏßCD·½ÏòÔÈËÙÔ˶¯£¬ËÙ¶ÈΪÿÃë$\sqrt{2}$
¸öµ¥Î»³¤¶È£»Í¬Ê±µãQ´ÓÔ­µãO³ö·¢£¬ÑØxÖáÕý·½ÏòÔÈËÙÔ˶¯£¬ËÙ¶ÈΪÿÃë1¸öµ¥Î»³¤¶È£®µãMÊÇÖ±ÏßPQÓëÅ×ÎïÏßµÄÒ»¸ö½»µã£¬µ±Ô˶¯µ½tÃëʱ£¬QM=2PM£¬Ö±½Óд³ötµÄÖµ£®

·ÖÎö £¨1£©¸ù¾ÝµãA¡¢BµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨£¬¼´¿ÉÇó³öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¸ù¾ÝµãA¡¢FµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨£¬¿ÉÇó³öÖ±ÏßAFµÄ½âÎöʽ£¬ÁªÁ¢Ö±ÏßAFºÍÅ×ÎïÏߵĽâÎöʽ³É·½³Ì×飬ͨ¹ý½â·½³Ì×é¿ÉÇó³öµãGµÄ×ø±ê£¬½ø¶ø¿ÉµÃ³öµãHµÄ×ø±ê£¬ÀûÓ÷ֽâÒòʽ·¨½«Å×ÎïÏß½âÎöʽ±äÐÎΪ½»µãʽ£¬Óɴ˿ɵóöµãEµÄ×ø±ê£¬ÔÙ¸ù¾ÝµãA¡¢E£¨F¡¢H£©µÄ×ø±êÀûÓôý¶¨ÏµÊý·¨£¬¿ÉÇó³öÖ±ÏßAE£¨FH£©µÄ½âÎöʽ£¬ÓÉ´Ë¿ÉÖ¤³öFH¡ÎAE£»
£¨3£©¸ù¾ÝµãA¡¢BµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨£¬¿ÉÇó³öÖ±ÏßABµÄ½âÎöʽ£¬½ø¶ø¿ÉÕÒ³öµãP¡¢QµÄ×ø±ê£¬·ÖµãMÔÚÏ߶ÎPQÉÏÒÔ¼°µãMÔÚÏ߶ÎQPµÄÑÓ³¤ÏßÉÏÁ½ÖÖÇé¿ö¿¼ÂÇ£¬½èÖúÏàËÆÈý½ÇÐεÄÐÔÖʿɵóöµãMµÄ×ø±ê£¬ÔÙÀûÓöþ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¿ÉµÃ³ö¹ØÓÚtµÄÒ»Ôª¶þ´Î·½³Ì£¬½âÖ®¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©½«µãA£¨-1£¬1£©¡¢B£¨4£¬6£©´úÈëy=ax2+bxÖУ¬
$\left\{\begin{array}{l}{a-b=1}\\{16a+4b=6}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=-\frac{1}{2}}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=$\frac{1}{2}$x2-$\frac{1}{2}$x£®

£¨2£©Ö¤Ã÷£ºÉèÖ±ÏßAFµÄ½âÎöʽΪy=kx+m£¬
½«µãA£¨-1£¬1£©´úÈëy=kx+mÖУ¬¼´-k+m=1£¬
¡àk=m-1£¬
¡àÖ±ÏßAFµÄ½âÎöʽΪy=£¨m-1£©x+m£®
ÁªÁ¢Ö±ÏßAFºÍÅ×ÎïÏß½âÎöʽ³É·½³Ì×飬
$\left\{\begin{array}{l}{y=£¨m-1£©x+m}\\{y=\frac{1}{2}{x}^{2}-\frac{1}{2}x}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{x}_{1}=-1}\\{{y}_{1}=1}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=2m}\\{{y}_{2}=2{m}^{2}-m}\end{array}\right.$£¬
¡àµãGµÄ×ø±êΪ£¨2m£¬2m2-m£©£®
¡ßGH¡ÍxÖᣬ
¡àµãHµÄ×ø±êΪ£¨2m£¬0£©£®
¡ßÅ×ÎïÏߵĽâÎöʽΪy=$\frac{1}{2}$x2-$\frac{1}{2}$x=$\frac{1}{2}$x£¨x-1£©£¬
¡àµãEµÄ×ø±êΪ£¨1£¬0£©£®
ÉèÖ±ÏßAEµÄ½âÎöʽΪy=k1x+b1£¬
½«A£¨-1£¬1£©¡¢E£¨1£¬0£©´úÈëy=k1x+b1ÖУ¬
$\left\{\begin{array}{l}{-{k}_{1}+{b}_{1}=1}\\{{k}_{1}+{b}_{1}=0}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{k}_{1}=-\frac{1}{2}}\\{{b}_{1}=\frac{1}{2}}\end{array}\right.$£¬
¡àÖ±ÏßAEµÄ½âÎöʽΪy=-$\frac{1}{2}$x+$\frac{1}{2}$£®
ÉèÖ±ÏßFHµÄ½âÎöʽΪy=k2x+b2£¬
½«F£¨0£¬m£©¡¢H£¨2m£¬0£©´úÈëy=k2x+b2ÖУ¬
$\left\{\begin{array}{l}{{b}_{2}=m}\\{2m{k}_{2}+{b}_{2}=0}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{k}_{2}=-\frac{1}{2}}\\{{b}_{2}=m}\end{array}\right.$£¬
¡àÖ±ÏßFHµÄ½âÎöʽΪy=-$\frac{1}{2}$x+m£®
¡àFH¡ÎAE£®

£¨3£©ÉèÖ±ÏßABµÄ½âÎöʽΪy=k0x+b0£¬
½«A£¨-1£¬1£©¡¢B£¨4£¬6£©´úÈëy=k0x+b0ÖУ¬
$\left\{\begin{array}{l}{{-k}_{0}+{b}_{0}=1}\\{4{k}_{0}+{b}_{0}=6}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{k}_{0}=1}\\{{b}_{0}=2}\end{array}\right.$£¬
¡àÖ±ÏßABµÄ½âÎöʽΪy=x+2£®
µ±Ô˶¯Ê±¼äΪtÃëʱ£¬µãPµÄ×ø±êΪ£¨t-2£¬t£©£¬µãQµÄ×ø±êΪ£¨t£¬0£©£®
µ±µãMÔÚÏ߶ÎPQÉÏʱ£¬¹ýµãP×÷PP¡ä¡ÍxÖáÓÚµãP¡ä£¬¹ýµãM×÷MM¡ä¡ÍxÖáÓÚµãM¡ä£¬Ôò¡÷PQP¡ä¡×¡÷MQM¡ä£¬Èçͼ2Ëùʾ£®
¡ßQM=2PM£¬
¡à$\frac{QM¡ä}{QP¡ä}$=$\frac{MM¡ä}{PP¡ä}$=$\frac{2}{3}$£¬
¡àQM¡ä=$\frac{4}{3}$£¬MM¡ä=$\frac{2}{3}$t£¬
¡àµãMµÄ×ø±êΪ£¨t-$\frac{4}{3}$£¬$\frac{2}{3}$t£©£®
ÓÖ¡ßµãMÔÚÅ×ÎïÏßy=$\frac{1}{2}$x2-$\frac{1}{2}$xÉÏ£¬
¡à$\frac{2}{3}$t=$\frac{1}{2}$¡Á£¨t-$\frac{4}{3}$£©2-$\frac{1}{2}$£¨t-$\frac{4}{3}$£©£¬
½âµÃ£ºt=$\frac{15¡À\sqrt{113}}{6}$£»
µ±µãMÔÚÏ߶ÎQPµÄÑÓ³¤ÏßÉÏʱ£¬
ͬÀí¿ÉµÃ³öµãMµÄ×ø±êΪ£¨t-4£¬2t£©£¬
¡ßµãMÔÚÅ×ÎïÏßy=$\frac{1}{2}$x2-$\frac{1}{2}$xÉÏ£¬
¡à2t=$\frac{1}{2}$¡Á£¨t-4£©2-$\frac{1}{2}$£¨t-4£©£¬
½âµÃ£ºt=$\frac{13¡À\sqrt{89}}{2}$£®
×ÛÉÏËùÊö£ºµ±Ô˶¯Ê±¼äΪ$\frac{15-\sqrt{113}}{6}$Ãë¡¢$\frac{15+\sqrt{113}}{6}$Ãë¡¢$\frac{13-\sqrt{89}}{2}$Ãë»ò$\frac{13+\sqrt{89}}{2}$Ãëʱ£¬QM=2PM£®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨ÇóÒ»´Î£¨¶þ´Î£©º¯Êý½âÎöʽ¡¢¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢¶þ´Îº¯ÊýµÄÈýÖÖÐÎʽ¡¢ÏàËÆÈý½ÇÐεÄÐÔÖÊÒÔ¼°Á½ÌõÖ±ÏßÏཻ»òƽÐУ¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©¸ù¾ÝµãA¡¢BµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨£¬Çó³öÅ×ÎïÏߵĽâÎöʽ£»£¨2£©¸ù¾ÝµãA¡¢E£¨F¡¢H£©µÄ×ø±êÀûÓôý¶¨ÏµÊý·¨£¬Çó³öÖ±ÏßAE£¨FH£©µÄ½âÎöʽ£º£¨3£©·ÖµãMÔÚÏ߶ÎPQÉÏÒÔ¼°µãMÔÚÏ߶ÎQPµÄÑÓ³¤ÏßÉÏÁ½ÖÖÇé¿ö£¬½èÖúÏàËÆÈý½ÇÐεÄÐÔÖÊÕÒ³öµãMµÄ×ø±ê£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏABC=90¡ã£¬AB=12£¬BC=5£¬ÈôDEÊÇ¡÷ABCµÄÖÐλÏߣ¬ÑÓ³¤DE½»¡÷ABCµÄÍâ½Ç¡ÏACMµÄƽ·ÖÏßÓÚµãF£¬ÔòÏ߶ÎDFµÄ³¤Îª£¨¡¡¡¡£©
A£®9B£®10C£®12D£®13

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èô¹ØÓÚxµÄ·½³Ì$\frac{3-2x}{x-3}$-$\frac{mx-2}{3-x}$=-1Î޽⣬ÔòmµÄÖµÊÇ£¨¡¡¡¡£©
A£®m=$\frac{5}{3}$B£®m=3C£®m=$\frac{5}{3}$»ò1D£®m=$\frac{5}{3}$»ò3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬Ö±Ïßy=x+bÓëË«ÇúÏßy=$\frac{k}{x}$£¨kΪ³£Êý£¬k¡Ù0£©ÔÚµÚÒ»ÏóÏÞÄÚ½»ÓÚµãA£¨1£¬2£©£¬ÇÒÓëxÖá¡¢yÖá·Ö±ð½»ÓÚB£¬CÁ½µã£®
£¨1£©ÇóÖ±ÏߺÍË«ÇúÏߵĽâÎöʽ£»
£¨2£©µãPÔÚxÖáÉÏ£¬ÇÒ¡÷BCPµÄÃæ»ýµÈÓÚ2£¬ÇóPµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÒÑÖªABÊÇ¡ÑOµÄÖ±¾¶£¬CDÓë¡ÑOÏàÇÐÓÚC£¬BE¡ÎCO£®
£¨1£©ÇóÖ¤£ºBCÊÇ¡ÏABEµÄƽ·ÖÏߣ»
£¨2£©ÈôDC=8£¬¡ÑOµÄ°ë¾¶OA=6£¬ÇóCEµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èçͼ£¬½«¡÷ABCÈƵãC˳ʱÕëÐýת£¬Ê¹µãBÂäÔÚAB±ßÉϵãB¡ä´¦£¬´Ëʱ£¬µãAµÄ¶ÔÓ¦µãA¡äÇ¡ºÃÂäÔÚBC±ßµÄÑÓ³¤ÏßÉÏ£¬ÏÂÁнáÂÛ´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®¡ÏBCB¡ä=¡ÏACA¡äB£®¡ÏACB=2¡ÏBC£®¡ÏB¡äCA=¡ÏB¡äACD£®B¡äCƽ·Ö¡ÏBB¡äA¡ä

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Ñ§Ð£ÍÅί×éÖ¯Ö¾Ô¸Õßµ½Í¼Êé¹ÝÕûÀíÒ»ÅúнøµÄͼÊ飮ÈôÄÐÉúÿÈËÕûÀí30±¾£¬Å®ÉúÿÈËÕûÀí20±¾£¬¹²ÄÜÕûÀí680±¾£»ÈôÄÐÉúÿÈËÕûÀí50±¾£¬Å®ÉúÿÈËÕûÀí40±¾£¬¹²ÄÜÕûÀí1240±¾£®ÇóÄÐÉú¡¢Å®ÉúÖ¾Ô¸Õ߸÷ÓжàÉÙÈË£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Ëæ×ÅÉç»áµÄ·¢Õ¹£¬Ë½¼Ò³µ±äµÃÔ½À´Ô½ÆÕ¼°£¬Ê¹ÓýÚÄܵÍÓͺÄÆû³µ£¬¶Ô»·±£ÓÐ×ŷdz£»ý¼«µÄÒâÒ壬ijÊÐÓйز¿ÃŶԱ¾ÊеÄijһÐͺŵÄÈô¸ÉÁ¾Æû³µ£¬½øÐÐÁËÒ»ÏîÓͺijéÑùʵÑ飺¼´ÔÚͬһÌõ¼þÏ£¬±»³éÑùµÄ¸ÃÐͺÅÆû³µ£¬ÔÚÓͺÄ1LµÄÇé¿öÏ£¬ËùÐÐÊ»µÄ·³Ì£¨µ¥Î»£ºkm£©½øÐÐͳ¼Æ·ÖÎö£¬½á¹ûÈçͼËùʾ£º

£¨×¢£º¼ÇAΪ12¡«12.5£¬BΪ12.5¡«13£¬CΪ13¡«13.5£¬DΪ13.5¡«14£¬EΪ14¡«14.5£©
ÇëÒÀ¾Ýͳ¼Æ½á¹û»Ø´ðÒÔÏÂÎÊÌ⣺
£¨1£©ÊÔÇó½øÐиÃÊÔÑéµÄ³µÁ¾Êý£»
£¨2£©Ç벹ȫƵÊý·Ö²¼Ö±·½Í¼£»
£¨3£©Èô¸ÃÊÐÓÐÕâÖÖÐͺŵÄÆû³µÔ¼900Á¾£¨²»¿¼ÂÇÆäËûÒòËØ£©£¬ÇëÀûÓÃÉÏÊöͳ¼ÆÊý¾Ý³õ²½Ô¤²â£¬¸ÃÊÐÔ¼ÓжàÉÙÁ¾¸ÃÐͺŵÄÆû³µ£¬ÔÚºÄÓÍ1LµÄÇé¿öÏ¿ÉÒÔÐÐÊ»13kmÒÔÉÏ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2-6x+m+4=0ÓÐÁ½¸öʵÊý¸ùx1£¬x2£®
£¨1£©ÇómµÄÈ¡Öµ·¶Î§£»
£¨2£©Èôx1£¬x2Âú×ã3x1=|x2|+2£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸