精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,已知点P的坐标为(2a+6a-3

1)当点P的纵坐标为-4,求a的值;

2)若点Py轴上,求点P的坐标;

3)若点P在第四象限,求a的取值范围.

【答案】1a=-1;(2)点P的坐标为(0-6);(3a的取值范围是-3a3

【解析】

1)根据点的纵坐标列方程求解即可;

2)根据y轴上点的坐标特征列方程求解即可;

3)根据第四象限内点的横坐标是正数,纵坐标是负数列不等式组求解即可.

解:(1)∵点P的纵坐标为-4

a-3=-4

解得a=-1

2)∵点Py轴上,

2a+6=0

解得a=-3

故点P的坐标为(0-6);

3)∵点P2a+6a-3)在第四象限,

解不等式①得a-3

解不等式②得a3

a的取值范围是-3a3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,ACBD交于点M,点FAD上,AF=6cm,BF=12cm,FBM=CBM,点EBC的中点,若点P1cm/s秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也同时停止运动,当点P运动__秒时,以P、Q、E、F为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,∠A40°.点P是射线AB上一动点(与点A不重合)CECF分别平分∠ACP和∠DCP交射线AB于点EF

(1)求∠ECF的度数;

(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;

(3)当∠AEC=∠ACF时,求∠APC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=-x2+2x+3x轴相交于A.B两点(点AB的左侧),与y轴相交于点C,顶点为D.

(1)直接写出A,B,C三点的坐标和抛物线的对称轴;

(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点PPF//DE交抛物线于点F,设点P的横坐标为m:

①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?

②设△BCF的面积为S,求Sm的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD 与正方形关于某点中心对称.已知A,,D三点的坐标分别是(0,4),(0,3),(0,2).

(1)求对称中心的坐标:

(2)写出顶点B,C,的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场有一种游戏,规则是:在一只装有8个红球和若干个白球(每个球除颜色外都相同)的不透明的箱子中,随机摸出1个球,摸到红球就可获得一瓶饮料.工作人员统计了参加游戏的人数和获得饮料的人数(见下表).

1)计算并完成表格;

参加游戏的人数

200

300

400

500

获得饮料的人数

39

63

82

99

获得饮料的频率

2)估计获得饮料的概率;

3)请你估计袋中白球的数量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学团委组织学生去儿童福利院慰问,准备购买15个甲种文具和20个乙种文具,共需885元;后翻阅商场海报发现,下周甲、乙两种文具进行促销活动,甲种文具打八折销售、乙种文具打九折,且打折后两种文具的销售单价相同.

(1)求甲、乙两种文具的原销售单价各为多少元?

(2)购买打折后的15个甲种文具和20个乙种文具,共可节省多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y=kx+b (k0) 的图像与反比例函数y=-的图像交于A-2m)和B (n-2) 两点,求:(1)一次函数的解析式;

2)△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,M为斜边AB上一点,且MB=MC=AC=8cm,平行于BC的直线l从BC的位置出发以每秒1cm的速度向上平移,运动到经过点M时停止. 直线l分别交线段MB、MC、AC于点D、E、P,以DE为边向下作等边DEF,设DEF与MBC重叠部分的面积为Scm2,直线l的运动时间为t

1求边BC的长度;

2求S与t的函数关系式;

3在整个运动过程中,是否存在这样的时刻t,使得以P、C、F为顶点的三角形为等腰三角形?若存在,请求出t的值;若不存在,请说明理由

4在整个运动过程中,是否存在这样的时刻t,使得以点D为圆心、BD为半径的圆与直线EF相切?若存在,请求出t的值;若不存在,请说明理由

查看答案和解析>>

同步练习册答案