精英家教网 > 初中数学 > 题目详情
  已知,则a:b=      

 

答案:
解析:

答案:

 


练习册系列答案
相关习题

科目:初中数学 来源:初中数学 三点一测丛书 八年级数学 下 (江苏版课标本) 江苏版 题型:013

反比例函数中系数k的几何意义

  反比例函数y=(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=,故ab=k,所以S=|k|(如图(1)).

  这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:

  例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.

  解答:=|k|

  =|k|

  故

  例2:如图(3),在y=(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=

  |k|=

  |k|=

  S1=S2=S3,故选A.

  例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲线在第三象限

  ∴k>0∴k=6

  ∴所以反比例函数的解析式为y=

  根据是述意义,请你解答下题:

  如图(5),过反比例函数y=(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小关系不能确定

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:013

  已知=,则的值为   ( )

  A       B     C     D

 

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:022

  已知,则=____.

 

查看答案和解析>>

科目:初中数学 来源: 题型:047

我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等

  (1)阅读与证明:

  对于这两个三角形均为直角三角形,显然它们全等.

  对于这两个三角形均为钝角三角形,可证它们全等(证明略).

  对于这两个三角形均为锐角三角形,它们也全等,可证明如下:

  已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1Cl,∠C=∠Cl.

  求证:△ABC≌△A1B1C1.

(请你将下列证明过程补充完整.)

证明:分别过点B,B1作BD⊥CA于D,B1 D1⊥C1 A1于D1.

  则∠BDC=∠B1D1C1=900,

  ∵BC=B1C1,∠C=∠C1,

  ∴△BCD≌△B1C1D1,-

  ∴BD=B1D1.

(2)归纳与叙述:

由(1)可得到一个正确结论,请你写出这个结论.

查看答案和解析>>

同步练习册答案