精英家教网 > 初中数学 > 题目详情
如图,是一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角三角形沿直线AD折叠,使点C恰好落在斜边AB上的点E处,则DE=
3cm
3cm
分析:先根据勾股定理求出AB的长,设CD=xcm,则BD=(8-x)cm,再由图形翻折变换的性质可知AE=AC=6cm,DE=CD=xcm,进而可得出BE的长,在Rt△BDE中利用勾股定理即可求出x的值,进而得出CD的长.
解答:解:∵△ABC是直角三角形,AC=6cm,BC=8cm,
∴AB=
AC2+BC2
=
62+82
=10cm,
∵△AED是△ACD翻折而成,
∴AE=AC=6cm,
设DE=CD=xcm,∠AED=90°,
∴BE=AB-AE=10-6=4cm,
在Rt△BDE中,BD2=DE2+BE2,即(8-x)2=42+x2,解得x=3.
故答案为:3cm.
点评:本题考查的是勾股定理,解答此类题目时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其它线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1、2是两个相似比为1:
2
的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.
(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE2+BF2=EF2
(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE2+BF2=EF2是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
精英家教网
精英家教网
(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

图1、2是两个相似比为1:
2
的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.
(1)图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E、F,如图4,①求证:DE=DF.②求证:AE2+BF2=EF2
(2)在图3中,绕点C旋转小直角三角形,使它的斜和CD延长线分别与交于点,如图5,证明结论:AE2+BF2=EF2仍成立.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,是一次国际数学教育大会的会徽的图案,蕴藏着许多数学知识.在△AB1C中,∠C是直角,AC=CB1=1,以AB1为直角边在△AB1C外作Rt△AB1B2,并且CB1=B1B2;以AB2为直角边在△AB1B2外作Rt△AB2B3,且CB1=B1B2=B2B3…照此方式继续下去,以△ACB1为第一个三角形,则第n个三角形的面积与第(n+1)个三角形的面积比为
n
n+1
n
n+1

查看答案和解析>>

科目:初中数学 来源:2009年北京市平谷区中考数学一模试卷(解析版) 题型:填空题

(2009•平谷区一模)如图,是一块直角三角形的土地,现在要在这块地上挖一个正方形蓄水池AEDF,已知剩余的两直角三角形(阴影部分)的斜边长分别为20cm和30cm,则剩余的两个直角三角形(阴影部分)的面积和为    cm2

查看答案和解析>>

同步练习册答案