精英家教网 > 初中数学 > 题目详情

阅读下列材料,然后解答后面的问题.

我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.

例:由2x+3y=12,得,(x、y为正整数)

,解得0<x<6.

为正整数,则为正整数.

由2与3互质,可知:x为3的倍数,从而x=3,代入

∴2x+3y=12的正整数解为

问题:

(1)请你写出方程2x+y=5的一组正整数解:  

(2)若为自然数,则满足条件的x值有  个;

A.2                B.3                C.4                D.5

(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?

 

【答案】

(1);(2)C;(3)两种

【解析】

试题分析:根据题意可知,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解.

(1) 由2x+y=5,得y=5-2x(x、y为正整数)

所以,解得

∴当x=1时,y=3;

当x=2时,y=1.

即方程的正整数解是

(2)同样为自然数,则有:0<x-2≤6,即2<x≤8

当x=3时,

当x=4时,

当x=5时,

当x=8时,

即满足条件x的值有4个,

故选C;

(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.

则根据题意得:3m+5n=35,其中m、n均为自然数,则

所以

由于为正整数,则为正整数,可知m为5的倍数.

∴当m=5时,n=4;

当m=10时,n=1.

答:有两种购买方案:即购买单价为3元的笔记本5本,单价为5元的钢笔4支;

或购买单价为3元的笔记本10本,单价为5元的钢笔1支.

考点:二元一次方程组的应用

点评:解题关键是要读懂题目给出的已知条件,根据条件求解.注意笔记本和钢笔是整体,所有不可能出现小数和负数,这也就说要求的是正整数.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,然后解答后面的问题.
我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得y=
12-2x
3
=4-
2
3
x
,(x、y为正整数)∴
x>0
12-2x>0
则有0<x<6.又y=4-
2
3
x
为正整数,则
2
3
x
为正整数.
由2与3互质,可知:x为3的倍数,从而x=3,代入y=4-
2
3
x=2

∴2x+3y=12的正整数解为
x=3
y=2

问题:
(1)请你写出方程2x+y=5的一组正整数解:
 

(2)若
6
x-2
为自然数,则满足条件的x值有
 
个;
A、2      B、3       C、4        D、5
(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下列材料,然后解答问题:
材料:结合具体的数,通过特例探究当a>0时,a与
1
a
的大小.
解:当a>1时,取a=2,则2>
1
2
;  取a=
3
2
,则
3
2
2
3
;…,所以a>
1
a

当a=1时,a=
1
a

当0<a<1时,取a=
1
2
,则
1
2
<2;取a=
2
3
,则
2
3
3
2
;…,所以a<
1
a

综上,当a>1时,a>
1
a
;当a=1时,a=
1
a
;当0<a<1时,a<
1
a

问题:结合具体的数,通过特例探究当a<0时,a与
1
a
的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,然后解答后面的问题:
我们知道二元一次方程组
2x+3y=12
3x-3y=6
的求解方法是消元法,即可将它化为一元一次方程来解,可求得方程组
2x+3y=12
3x-3y=6
有唯一解.
我们也知道二元一次方程2x+3y=12的解有无数个,而在实际问题中我们往往只需要求出其正整数解.下面是求二元一次方程2x+3y=12的正整数解的过程:
由2x+3y=12得:y=
12-2x
3
=4-
2
3
x
∵x、y为正整数,∴
x>0
12-2x>0
则有0<x<6
又y=4-
2
3
x为正整数,则
2
3
x为正整数,所以x为3的倍数.
又因为0<x<6,从而x=3,代入:y=4-
2
3
×3=2
∴2x+3y=12的正整数解为
x=3
y=2

解决问题:
(1)九年级某班为了奖励学习进步的学生,花费35元购买了笔记本和钢笔两种奖品,其中笔记本的单价为3元/本,钢笔单价为5元/支,问有几种购买方案?
(2)试求方程组
2x+y+z=10
3x+y-z=12
的正整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,然后解答后面的问题:
我们知道二元一次方程组
2x+3y=12
3x-3y=6
的求解方法是消元法,即可将它化为一元一次方程来解,可求得方程组
2x+3y=12
3x-3y=6
有唯一解.
我们也知道二元一次方程2x+3y=12的解有无数个,而在实际问题中我们往往只需要求出其正整数解.
下面是求二元一次方程2x+3y=12的正整数解的过程:
由2x+3y=12得:y=
12-2x
3
=4-
2
3
x

∵x、y为正整数,∴
x>0
12-2x>0
则有0<x<6
又y=4-
2
3
x
为正整数,则
2
3
x
为正整数,所以x为3的倍数
又因为0<x<6,从而x=3,代入:y=4-
2
3
×3
=2
∴2x+3y=12的正整数解为
x=3
y=2

问题:(1)若 
6
x-2
为正整数,则满足条件的x的值有几个.(  )
A、2    B、3    C、4   D、5
      (2)九年级某班为了奖励学习进步的学生,花费35元购买了笔记本和钢笔两种奖品,其中笔记本的单价为3元/本,钢笔单价为5元/支,问有几种购买方案?
      (3)试求方程组
2x+y+z=10
3x+y-z=12
 的正整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下列材料,然后解答问题
若关于x的方程:mx-3=3x+5解是正整数,求m的整数值.
解:由方程:mx-3=3x+5得:
mx+3x=5+3
即:(m+3)x=8
∵x是正整数,m是整数
∴m+3是8的正整数约数
∴m+3=1或m+3=2或m+3=4或m+3=8
∴m=-2或m=-1或m=1或m=5

试仿照上面的解法,回答下面的问题:
若关于y的方程:ny+y+5=-4y+12解是正整数,求n的整数值.

查看答案和解析>>

同步练习册答案