精英家教网 > 初中数学 > 题目详情
如图,Rt△ABC中,∠C=90°,O是AB边上一点,⊙O与AC、BC都相切,若BC=3,AC=4,则⊙O的半径为(  )
A.1B.2C.
5
2
D.
12
7

设AC与⊙O的切点为F,⊙O半径为r,
如图,连接OF,
结合题意有,OF⊥AC,即OFBC,
故有△AOF△ABC,
即AF:AC=r:BC,
又AF=AC-r,BC=3,AC=4,
代入可得
r=
12
7

故选D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,菱形ABCD的对角线AC和BD相交于O点,E,F,G,H分别是AB,BC,CD,DA的中点,求证:E,F,G,H四个点在以O为圆心的同一个圆上.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠C=90°,O是斜边AB上的一点,圆O过点A并与边BC相切于点D,与边AC相交于点E.
(1)求证:AD平分∠BAC;
(2)若圆O的半径为4,∠B=30°,求AC长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,从⊙O外一点A作⊙O的切线AB,AC,切点分别为B,C,⊙O的直径BD为6,连结CD,AO.
(1)求证:CDAO;
(2)求CD•AO的值;
(3)若AO=2CD,求劣弧BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)试猜想BC,BD,BE三者之间的等量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AC是圆O的直径,PA切圆O于点A,弦BCOP,OP交圆O于点D,连接PB
(1)求证:PB是圆O的切线;
(2)若PA=3,PD=2,求圆O的半径R的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是(  )
A.3cmB.2
2
cm
C.3
3
cm
D.6
3
cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的弦,若OA⊥OD且CD=BD.求证:BD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,弦CD⊥AB于点M,过点B作BECD,交AC的延长线于点E,连接BC.
(1)求证:BE为⊙O的切线.
(2)若CD=6,tan∠BCD=
1
2
,求⊙O的直径.

查看答案和解析>>

同步练习册答案