精英家教网 > 初中数学 > 题目详情
如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.
【答案】分析:(1)易得c=3,故设抛物线解析式为y=ax2+bx+3,根据抛物线所过的三点的坐标,可得方程组,解可得a、b的值,即可得解析式;
(2)易由顶点坐标公式得顶点坐标,根据图形间的关系可得四边形ABDE的面积=S△ABO+S梯形BOFD+S△DFE,代入数值可得答案;
(3)根据题意,易得∠AOB=∠DBE=90°,且,即可判断出两三角形相似.
解答:解:(1)∵抛物线与y轴交于点(0,3),
∴设抛物线解析式为y=ax2+bx+3(a≠0)(1分)
根据题意,得
解得
∴抛物线的解析式为y=-x2+2x+3(5分);

(2)如图,设该抛物线对称轴是DF,连接DE、BD.过点B作BG⊥DF于点G.
由顶点坐标公式得顶点坐标为D(1,4)(2分)
设对称轴与x轴的交点为F
∴四边形ABDE的面积=S△ABO+S梯形BOFD+S△DFE
=AO•BO+(BO+DF)•OF+EF•DF
=×1×3+×(3+4)×1+×2×4
=9;

(3)相似,如图,
BD=
∴BE=
DE=
∴BD2+BE2=20,DE2=20
即:BD2+BE2=DE2
所以△BDE是直角三角形
∴∠AOB=∠DBE=90°,且
∴△AOB∽△DBE(2分).
点评:本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)点M是直线CD上的一动点,BM交抛物线于N,是否存在点N是线段BM的中点,如果存在,求出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线与x轴交于点A(-1,0),与y轴交于点C(0,3),且对称轴方程为x=1
(1)求抛物线与x轴的另一个交点B的坐标;
(2)求抛物线的解析式;
(3)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(4)若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于点A(-1,0),E(3,0),与y轴交于点B,且该精英家教网函数的最大值是4.
(1)抛物线的顶点坐标是(
 
 
);
(2)求该抛物线的解析式和B点的坐标;
(3)设抛物线顶点是D,求四边形AEDB的面积;
(4)若抛物线y=mx2+nx+p与上图中的抛物线关于x轴对称,请直接写出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,在坐标平面内找一点G,使以点G、F、C为顶点的三角形与△COE相似,请直接写出符合要求的,并在第一象限的点G的坐标;
(3)将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?

查看答案和解析>>

同步练习册答案