【题目】如图,已知等边△ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.
(1)求证:BE=BF;
(2)试说明DG与AF的位置关系和数量关系.
【答案】(1)见解析;(2)AF=2GD,AF∥DG.
【解析】
(1)由等边三角形的性质可得AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,BD=AD,∠BCD=30°,由“SAS”可证△ABF≌△CBE,可得BF=BE;
(2)通过证明△BEF是等边三角形,可得BG=GF,由三角形中位线定理可得AF=2GD,AF∥DG.
证明:(1)∵△ABC是等边三角形
∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°
∵CD⊥AB,AC=BC
∴BD=AD,∠BCD=30°,
∵AF⊥AC
∴∠FAC=90°
∴∠FAB=∠FAC﹣∠BAC=30°
∴∠FAB=∠ECB,且AB=BC,AF=CE
∴△ABF≌△CBE(SAS)
∴BF=BE
(2)AF=2GD,AF∥DG
理由如下:连接EF,
∵△ABF≌△CBE
∴∠ABF=∠CBE,
∵∠ABE+∠EBC=60°
∴∠ABE+∠ABF=60°,且BE=BF
∴△BEF是等边三角形,且GE⊥BF
∴BG=FG,且BD=AD
∴AF=2GD,AF∥DG
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,直线与x轴正半轴,y轴正半轴分别交于点A,B,点,点E在第一象限,为等边三角形,连接AE,BE
求点E的坐标;
当BE所在的直线将的面积分为3:1时,求的面积;
取线段AB的中点P,连接PE,OP,当是以OE为腰的等腰三角形时,则______直接写出b的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG
(1)判断CG与⊙O的位置关系,并说明理由;
(2)求证:2OB2=BCBF;
(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据函数学习中积累的知识与经验,李老师要求学生探究函数y=+1的图象.同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整.
(1)函数y=+1的图象可以由我们熟悉的函数 的图象向上平移 个单位得到;
(2)函数y=+1的图象与x轴、y轴交点的情况是: ;
(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为( )
A. ﹣或﹣12B. ﹣或2C. ﹣12或2D. ﹣或﹣12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B顺时针旋转60°得到△CBD,若点B的坐标为(1,0),则点C的坐标为( )
A.(3,)B.(,)C.(3,)D.(,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为( )
A. 5B. 6C. 7D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了40m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(结果精确到1m)(参考数据:≈1.732,≈1.414)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某商品标牌的示意图,⊙O与等边△ABC的边BC相切于点C,且⊙O的直径与△ABC的高相等,已知等边△ABC边长为4,设⊙O与AC相交于点E,则AE的长为( )
A.B.1C.﹣1D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com