分析 作辅助线OB、CE构建正方形CEBO.根据圆周角定理(同弧所对的圆周角是所对的圆心角的一半)求得∠OAC=2∠ABC=60°,然后由切线的性质及平行线的性质求得OB⊥OC,OB⊥BD;再根据圆的半径都相等知OB=OC,所以判定四边形CEBO是正方形,然后在直角三角形CDE中利用正弦三角函数sin∠D=sin60°求CD的长度.
解答 解:连接OB,OA,OC,过点C作CE⊥BD于点E.
∵∠ABC=30°,
∴∠AOC=60°,
∵OA=OC,
∴∠ACO=∠OAC=60°,
∴∠ACO=∠D=60°,
∴OC∥BD,
∴∠OCD=120°,
∵BD是⊙O的切线,
∴OB⊥OC,OB⊥BD;
又∵OB=OC,
∴四边形CEBO是正方形,
∴CE=OB=1,
∴CD=$\frac{CE}{sin60°}$=$\frac{2\sqrt{3}}{3}$.
点评 本题综合考查了正方形的判定与性质、圆周角定理,切线的性质,解答该题时,借助于辅助线OB、CE构建正方形CEBO,然后由正方形的性质、直角三角形中的特殊角的三角函数值来求CD的长度.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com