精英家教网 > 初中数学 > 题目详情

抛物线与x轴交点为A、B,与y轴交点为C,顶点为M,(1)求经过M,C的直线与x轴的交点N的坐标;(2)tan∠MNB的值.

答案:
解析:

y=x3N(3,0)tanMNB=1


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

抛物线y=
12
(x+1)2-2

(1)设此抛物线与x轴交点为A、B(A在B的左边),请你求出A、B两点的坐标;
(2)有一条直线y=x-1,试利用图象法求出该直线与抛物线的交点坐标;
(3)P是抛物线上的一个动点,问是否存在一点P,使S△ABP=4,若存在,则有几个这样的点P,并写出它们的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+bx+c经过点P(2,-3),Q(-1,0).
(1)求抛物线的解析式.
(2)设抛物线与y轴交点为A.求S△APQ的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

抛物线y=(k2-2)x2-4kx+m的对称轴是直线x=2,且它的最低点在直线y=-2x+2上,求:
(1)函数解析式;
(2)若抛物线与x轴交点为A、B与y轴交点为C,求△ABC面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD.
(1)填空:A点坐标为(
 
 
),D点坐标为(
 
 
);
(2)若抛物线y=
1
3
x2+bx+c经过C,D两点,求抛物线的解析式;
(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.
(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-
b
2a
,顶点坐标是(-
b
2a
4ac-b2
4a

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)经过A(-1,0)、B(3,0)两点,抛物线与y轴交点为C,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接精英家教网BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P',请直接写出P'点坐标,并判断点P'是否在该抛物线上.

查看答案和解析>>

同步练习册答案