精英家教网 > 初中数学 > 题目详情
精英家教网已知抛物线y=ax2+bx-1经过点A(一1,0)、B(m,0)(m>0),且与y轴交于点C
(1)求抛物线对应的函数表达式(用含m的式子表示);
(2)如图,⊙M经过A、B、C三点,求扇形MBC(阴影部分)的面积S(用含m的式子表示);
(3)若抛物线上存在点P,使得△APB∽△ABC,求m的值.
分析:(1)本题需先根据点(一1,0)、(m,0)在抛物线y=ax2+bx-1上,把它代入求出a、b的值,即可求出解析式.
(2)本题需先令x=0,得出y的值,得出OA=OC,从而求出∠OAC、∠BMC、∠OAC的度数,再根据BC的长,求出MB、MC的长,即可求出扇形MBC(阴影部分)的面积S.
(3)本题需先根据△ABC∽△APB,求出∠PAB、∠BAC的度数,再过点P作PD⊥x轴,连接PA、PB,得出PD=AD,设出点P坐标,得出解析式,求出x1、x2的值,再求出P1与P2的坐标,即可求出AC•AP=AB2解出m的值.
解答:解:(1)∵点(-1,0)、(m,0)在抛物线y=ax2+bx-1上
a-b-1=0
m2a+mb-1=0

解得
a=
1
m
b=
1-m
m

∴抛物线对应的函数表达式为:y=
1
m
x2+
1-m
m
x-1


(2)在抛物线对应的函数表达式中,令x=0,得y=-1,
∴点C坐标为(0,-1).
∴OA=OC,
∴∠OAC=45°,
∴∠BMC=2∠OAC=90°.
又∵BC=
m2+1
,∴MB=MC=
2
2
BC.
S=
1
4
π•MB2=
1
4
π•(
2
2
BC)2=
π
8
BC2=
(m2+1)π
8


(3)如图,∵△ABC∽△APB,精英家教网
∴∠PAB=∠BAC=∠45°,
AB
AP
=
AC
AB

过点P作PD⊥x轴,垂足为D,连接PA、PB,
在Rt△PDA中,
∵∠PAB=∠APD=45°,
∴PD=AD,
设点P坐标为(x,x+1),
∵点P在抛物线上,
x+1=
1
m
x2+
1-m
m
x-1
,即x2+(1-2m)x-2m=0,
解得x1=-1,x2=2m,
∴P1(2m,2m+1),P2(-1,0)(不合题意,舍去),
此进AP=
2
PD=(2m+1)
2
,又由
AB
AP
=
AC
AB
,得AC•AP=AB2
2
(2m+1)
2
=(m+1)2,整理,得m2-2m-1=0,
解得m1=1+
2
,m2=1-
2
(舍去),
m的值是1+
2
点评:此题考查了二次函数的综合问题,综合应用二次函数的图象和性质,能根据已知条件和图形列出式子求出答案是本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案