精英家教网 > 初中数学 > 题目详情
(2012•黄石)如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.
分析:根据平行四边形性质求出AD∥BC,且AD=BC,推出∠ADE=∠CBF,求出DE=BF,证△ADE≌△CBF,推出∠DAE=∠BCF即可.
解答:证明:∵四边形ABCD为平行四边形,
∴AD∥BC,且AD=BC,
∴∠ADE=∠CBF          
又∵BE=DF,
∴BF=DE,
∵在△ADE和△CBF中
AD=CB
∠ADE=∠CBF
DE=BF

∴△ADE≌△CBF,
∴∠DAE=∠BCF.
点评:本题考查了平行四边形性质,平行线性质,全等三角形的性质和判定的应用,关键是求出证出△ADE和△CBF全等的三个条件,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•黄石)如图所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB和CD(均与水平面垂直),再将集热板安装在AD上.为使集热板吸热率更高,公司规定:AD与水平线夹角为θ1,且在水平线上的射影AF为1.4m.现已测量出屋顶斜面与水平面夹角为θ2,并已知tanθ1=1.082,tanθ2=0.412.如果安装工人已确定支架AB高为25cm,求支架CD的高(结果精确到1cm)?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄石)如图所示,已知A点从(1,0)点出发,以每秒1个单位长的速度沿着x轴的正方向运动,经过t秒后,以O、A为顶点作菱形OABC,使B、C点都在第一象限内,且∠AOC=60°,又以P(0,4)为圆心,PC为半径的圆恰好与OA所在的直线相切,则t=
4
3
-1
4
3
-1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄石)如图所示,已知A(
1
2
,y1),B(2,y2)为反比例函数y=
1
x
图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄石)如图所示,扇形AOB的圆心角为120°,半径为2,则图中阴影部分的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄石)如图所示,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF长为(  )

查看答案和解析>>

同步练习册答案