精英家教网 > 初中数学 > 题目详情

【题目】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的面积法给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用面积法来证明,下面是小聪利用图1证明勾股定理的过程:

将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.

证明:连结DB,过点DBC边上的高DF,则DF=EC=b﹣a,

∵S四边形ADCB=SACD+SABC= 12 b2+ 12 ab.

∵S四边形ADCB=SADB+SDCB= 12 c2+ 12 a(b﹣a)

∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)

∴a2+b2=c2

请参照上述证法,利用图2完成下面的证明.

将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2

【答案】证明见解析.

【解析】试题分析:首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S五边形ACBED ,两者相等,整理即可得证.

试题解析:连结BD,过点BDE边上的高BF,则BF=b﹣a,

S五边形ACBED=SACB+SABE+SADE=ab+ b2+ ab,

S五边形ACBED=SACB+SABD+SBDE= ab+ c2+ a(b﹣a),

ab+b2+ ab= ab+c2+a(b﹣a),

∴a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】先化简,再求值:4(mn2-2m)-2(3m-mn2),其中m=-1,n=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是(

A. ﹣5a﹣1=﹣5a+1 B. a2+a2=a4 C. 3a32a2=6a6 D. ﹣a23=﹣a6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴上点A表示﹣1,点B表示2,则表示A、B两点间的距离是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠α=55°34′,则∠α的余角等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定ABC≌△ADC的是(  )

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠C=70°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小,此时∠MAN的度数为_________°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中,真命题是(

A.对角线相等的四边形是等腰梯形

B.两个相邻的内角相等的梯形是等腰梯形

C.一组对边平行,另一组对边相等的四边形是等腰梯形

D.平行于等腰三角形底边的直线截两腰所得的四边形是等腰梯形

查看答案和解析>>

同步练习册答案