【题目】如图,在正方形ABCD中,以AB为腰向正方形内部作等腰△ABE,点G在CD上,且CG=3DG.连接BG并延长,与AE交于点F,与AD延长线交于点H.连接DE交BH于点K,连接CK.若AE2=BFBH,FG=,则S四边形EFKC=_____.
【答案】
【解析】
设DG=3a,CG=9a,作KM⊥CD于M,EN⊥AB于N,想办法求出线段KF、EF、KM、EN、FG,想办法用a的代数式表示四边形EFKC的面积,再求出a即可解决问题.
∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠BAD=∠ADC=90°,
∵CG=3DG,
∴可以假设DG=3a,CG=9a,
则AB=AD=BC=CD=12a,
∴DG∥AB,
∴,
∴DH=4a,GH=5a,BH=20a,
∵AE2=BFBH,AE=AB,
∴AB2=BFBH,
∴,∵∠ABF=∠ABH,
∴△ABF∽HBA,
∴∠AFB=∠BAH=90°,
∴AF=,BF=a,
∴FG=BH-BF-GH=a,
∵AE=AD,
∴∠ADE=∠AED,
∵∠ADE+∠GDK=90°,∠KEF+∠EKF=90°,∠EKF=∠GKD,
∴∠GDK=∠GKD,
∴GD=GK=3a,
作KM⊥CD于M,EN⊥AB于N,
∵,
∴KM=a,
∵△AFB≌△ANE,
∴EN=BF=a,
∴S四边形EFKC=S△EFK+S△ECK
=s△EFK+(S△CDE-S△CDK)
=×a×a+(×12a×a-×12a×a)
=a2,
∵FG=a,
∴a=,
∴S四边形EFKC=,
故答案为.
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于,两点,与轴交于点.
填空:________;
点在抛物线上,且,求面积的最大值;
设为线段上一点(不含端点),连接,一动点从点出发,沿线段以每秒一个单位速度运动到点,再沿线段以每秒个单位的速度运动到后停止,当点的坐标是多少时,点在整个运动中用时最少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.
(1)直接写出△BCD的面积为 (用含m的式子表示).
(2)如图2,在一般的Rt△ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.
(3)如图3,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为 ;若BC=m,则△BCD的面积为 (用含m的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直角坐标平面内的两点A(3,2),点B (6,0)过点B作Y轴的平行线交直线OA于点C
(1)求直线OA所对应的函数解析式
(2)若某一个反比例函数的图像经过点A,且交BC于点D,联结AD,求△ACD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,点P是BC延长线上一点,连结PD并延长交BA延长线于点E.记△ABP的面积为S1,△ECP的面积为S2,则S1与S2的大小关系是( )
A. S1=S2 B. S1>S2 C. S1<S2 D. 都可能
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD为∠BAC的平分线,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC交AC的延长线于F.
(1)求证:BE=CF;
(2)如果AB=7,AC=5,求AE,BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列选项中,错误的是( )
A. sinα=cosα B. tanC=2 C. sinβ= D. tanα=1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,P为AD边上一点,沿直线BP将△ABP翻折至△EBP(点A的对应点为点E),PE与CD相交于点O,且OE=OD.
(1)求证:PE=DH;
(2)若AB=10,BC=8,求DP的长.
【答案】(1)见解析;(2).
【解析】试题分析:(1) 先证明△DOP≌△EOH,再利用等量代换得到PE=DH.
(2) 设DP=x, Rt△BCH中,先用 x表示三角形三边,利用勾股定理列式解方程.
试题解析:
(1)解:证明:∵OD=OE,∠D=∠E=90°,∠DOP=∠EOH,
∴△DOP≌△EOH,
∴OP=OH,
∴PO+OE=OH+OD,
∴PE=DH.
(2)解:设DP=x,则EH=x,BH=10﹣x,
CH=CD﹣DH=CD﹣PE=10﹣(8﹣x)=2+x,
∴在Rt△BCH中,BC2+CH2=BH2
(2+x)2+82=(10﹣x)2,
∴x=,
∴DP=.
【题型】解答题
【结束】
25
【题目】某文教店老板到批发市场选购A,B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.
(1)求A,B两种品牌套装每套进价分别为多少元?
(2)若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:
摸球总 次数 | 10 | 20 | 30 | 60 | 90 | 120 | 180 | 240 | 330 | 450 |
“和为8”出 现的频数 | 2 | 10 | 13 | 24 | 30 | 37 | 58 | 82 | 110 | 150 |
“和为8”出 现的频率 | 0.20 | 0.50 | 0.43 | 0.40 | 0.33 | 0.31 | 0.32 | 0.34 | 0.33 | 0.33 |
解答下列问题:
(1)如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;
(2)如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com