精英家教网 > 初中数学 > 题目详情
汽车由绵阳驶往相距280千米的乐山,如果汽车的平均速度是70千米/小时,那么汽车距乐山的路程s(千米)与行驶时间t(小时)的函数关系用图象表示应为(  )
A.B.C.D.
∵两地相距280千米,车速是70千米/小时,
∴s=-70t+280,
∵s≥0,
∴-70t+280≥0,
解得t≤4,
所以,函数图象是端点为(0,280)和(4,0)的线段.
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在等腰三角形ABC中,AB=AC=10cm,∠ABC=30°,以BC所在直线为x轴,以BC边上的高所在的直线为y轴建立平面直角坐标系.
(1)求直线AC的解析式;
(2)有一动点P以1cm/s的速度从点B开始沿x轴向其正方向运动,设点P的运动为t秒(单位:s).①当t为何值时,△ABP是直角三角形;②现有另一点Q与点P同时从点B开始,以1cm/s的速度从点B开始沿折线BAC运动,当点Q到达点C时,P、Q两点同时停止运动.试写出△BPQ的面积S关于t的函数解析式,并写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在如图所示的平面直角坐标系中,直线AB:y=k1x+b1与直线AD:y=k2x+b2相交于点A(1,3),且点B坐标为(0,2),直线AB交x轴负半轴于点C,直线AD交x轴正半轴于点D.
(1)求直线AB的函数解析式;
(2)根据图象直接回答,不等式k1x+b1<k2x+b2的解集;
(3)若△ACD的面积为9,求直线AD的函数解析式;
(4)若点M为x轴一动点,当点M在什么位置时,使AM+BM的值最小?求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,函数y=kx+b的图象经过点(-1,2)与(2,-1),当函数值y>-1时,自变量x的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的函数图象如图所示,试根据图象,回答下列问题:
(1)快车追上慢车需几个小时?
(2)求慢车、快车的速度;
(3)求A、B两地之间的路程.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,A、B两点坐标分别是(4,0),(0,3),M是y轴上一点,沿AM折叠,AB刚好落在x轴上AB′处,则直线AM的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在如图1所示的平面直角坐标系xOy中,A、C两点的坐标分别为A(4,2),C(n,-2)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O-A-B-C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.
(1)结合以上信息及图2填空:图2中的m=______;
(2)求B、C两点的坐标及图2中OF的长;
(3)若OM是∠AOB的角平分线,且点G与点H分别是线段AO与射线OM上的两个动点,直接写出HG+AH的最小值,请在图3中画出示意图并简述理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某工厂生产甲、乙两种不同的产品,所需原料为同一种原材料,生产每吨产品所需原材料的数量和生产过程中投入的生产成本的关系如表所示:
产品
原材料数量(吨)12
生产成本(万元)42
若该工厂生产甲种产品m吨,乙种产品n吨,共用原材料160吨,销售甲、乙两种产品的利润y(万元)与销售量x(吨)之间的函数关系如图所示,全部销售后获得的总利润为200万元.
(1)求m、n的值;
(2)试问:该工厂投入的生产成本多少万元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

下表是西昌市到攀枝花市两条线路的有关数据:
线路高速公路108国道
路程185千米250千米
过路费120元0元
(1)若小车在高速路上行驶的平均速度为90千米/小时,在108国道上行驶的平均速度为50千米/小时,则小车走高速公路比走108国道节省多少时间?
(2)若小车每千米的耗油量为x升,汽油价格为7元/升.问x为何值时,走哪条线路的总费用较少?(总费用=过路费+耗油费)
(3)公路管理部门在高速路口对从西昌市到攀枝花市五类不同耗油的小车进行统计,得到平均每小时通过的车辆数的频数分布直方图如图所示.请估算10小时年俄内这五类小车走高速公路比走108国道节省了多少升汽油?(以上结果均保留两个有效数字)

查看答案和解析>>

同步练习册答案