【题目】如图,在平行四边形ABCD中,点E、F分别是AD、BC的中点.求证:AF=CE.
科目:初中数学 来源: 题型:
【题目】【操作发现】
(1)如图1,为等边三角形,先将三角板中的角与重合,再将三角板绕点按顺时针方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板斜边上取一点,使,线段上取点,使,连接,.
①求的度数;
②与相等吗?请说明理由;
【类比探究】
(2)如图2,为等腰直角三角形,,先将三角板的角与重合,再将三角板绕点按顺时针方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板另一直角边上取一点,使,线段上取点,使,连接,.请直接写出探究结果:
①的度数;
②线段之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合:
(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数;
(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,BM之间的数量关系,并说明理由.
(3)在图①中,连接BD分别交AE,AF于点M,N,若DN=3 ,BM=3 ,求MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG. 【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个工程队同时开始维修某一段路面,一段时间后,甲队被调往别处,乙队又用了2小时完成了剩余的维修任务.已知乙队每小时维修路面的长度保持不变,甲队每小时维修路面30米.甲、乙两队在此路段维修路面的总长度y(米)与维修时间x(时)之间的函数图象如图所示.
(1)甲队调离时,甲、乙两队已维修路面的总长度为
(2)求此次维修路面的总长度a.
(3)求甲队调离后y与x之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示( )
A.74.4×1012
B.7.44×1013
C.74.4×1013
D.7.44×1015
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com