精英家教网 > 初中数学 > 题目详情
17.已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.
(1)点P的纵坐标比横坐标大3;
(2)点P在过A(2,-4)点,且与y轴平行的直线上;
(3)点P到两坐标轴的距离相等.

分析 (1)根据纵坐标比横坐标大3列方程求出m的值,再求解即可;
(2)根据平行于y轴的直线上的点的横坐标相等列方程求出m的值,再求解即可;
(3)根据点到两坐标轴的距离相等,横坐标与纵坐标相等或或互为相反数列方程分别求出m的值,再求解即可.

解答 解:(1)根据题意,得(m-1)-(2m+4)=3,
解之,得m=-8,
∴2m+4=-12,m-1=-9,
∴点P的坐标为(-12,-9);

(2)根据题意,得2m+4=2,
解之,得m=-1,
∴2m+4=2,m-1=-2,
∴点P的坐标为(2,-2);

(3)根据题意,得2m+4=m-1或2m+4+m-1=0,
解之,得m=-5或m=-1,
∴2m+4=-6,m-1=-6或2m+4=2,m-1=-2,
∴点P的坐标为(-6,-6)或(2,-2).

点评 本题考查了坐标与图形性质,主要利用了平行于y轴的直线上的点的坐标特征,难点在于(3)要考虑两种情况.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标分别为:
A(-3,0),B(-1,-2),C(-2,2).
(1)请在图中画出△ABC绕B点顺时针旋转90°后的图形△A′BC′.
(2)请直接写出以A′、B、C′.为顶点平行四边形的第4个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=5cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1,已知抛物线的方程C1:y=-$\frac{1}{m}$(x+2)(x-m)(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2,2),求实数m的值;
(2)在(1)的条件下,求△BCE的面积;
(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列结论中:①若a=b,则$\sqrt{a}$=$\sqrt{b}$,②在同一平面内,若a⊥b,b∥c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;④|$\sqrt{3}$-2|=2-$\sqrt{3}$,正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.A校和B校分别库存有电脑12台和6台,现决定支援给C校10台和D校8台.已知从A校调运一台电脑到C校和D校的运费分别为40元和10元;从B校调运一台电脑到C校和D校的运费分别为30元和20元.

(1)设A校运往C校的电脑为x台,请仿照下图,求总运费W(元)关于x的函数关系式;
(2)求出总运费最低的调运方案,最低运费是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知一次函数y=2x+4
(1)求图象与x轴的交点A的坐标,与y轴交点B的坐标;
(2)在(1)的条件下,求出△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.把多项式x2+xy因式分解的结果是x(x+y).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,正△ABC的边长为2,⊙C的半径为1,点D在⊙C上,以AD为边作正△ADE,连接CD、CE、BE.
(1)求证:BE=CD;
(2)∠BAE为多少度时,AD为⊙C的切线?
(3)请直接写出CE的最大值和最小值.

查看答案和解析>>

同步练习册答案