精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣ x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).

(1)求抛物线的解析式;
(2)求证:直线l是⊙M的切线;
(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.

【答案】
(1)

解:设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣

∴抛物线的解析式为y=﹣ x2 x+


(2)

解:连接AM,过点M作MG⊥AD,垂足为G.

把x=0代入y=﹣ x+4得:y=4,

∴A(0,4).

将y=0代入得:0=﹣ x+4,解得x=8,

∴B(8,0).

∴OA=4,OB=8.

∵M(﹣1,2),A(0,4),

∴MG=1,AG=2.

∴tan∠MAG=tan∠ABO=

∴∠MAG=∠ABO.

∵∠OAB+∠ABO=90°,

∴∠MAG+∠OAB=90°,即∠MAB=90°.

∴l是⊙M的切线


(3)

解:∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,

∴∠FPE=∠FBD.

∴tan∠FPE=

∴PF:PE:EF= :2:1.

∴△PEF的面积= PEEF= × PF PF= PF2

∴当PF最小时,△PEF的面积最小.

设点P的坐标为(x,﹣ x2 x+ ),则F(x,﹣ x+4).

∴PF=(﹣ x+4)﹣(﹣ x2 x+ )=﹣ x+4+ x2+ x﹣ = x2 x+ = (x﹣ 2+

∴当x= 时,PF有最小值,PF的最小值为

∴P( ).

∴△PEF的面积的最小值为= ×( 2=


【解析】(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入可求得a的值,从而得到抛物线的解析式;(2)连接AM,过点M作MG⊥AD,垂足为G.先求得点A和点B的坐标,可求得,可得到AG、ME、OA、OB的长,然后利用锐角三角函数的定义可证明∠MAG=∠ABD,故此可证明AM⊥AB;(3)先证明∠FPE=∠FBD.则PF:PE:EF= :2:1.则△PEF的面积= PF2 , 设点P的坐标为(x,﹣ x2 x+ ),则F(x,﹣ x+4).然后可得到PF与x的函数关系式,最后利用二次函数的性质求解即可.
【考点精析】利用二次函数的性质对题目进行判断即可得到答案,需要熟知增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为(
A.9
B.6
C.3
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是(
A.
B.
C.5
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.

(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)
(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:﹣12+| |+(π﹣3.14)0﹣tan60°+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.

(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017天水)下列说法正确的是(
A.不可能事件发生的概率为0
B.随机事件发生的概率为
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E为BC边上的一点,且AE与DE分别平分∠BAD和∠ADC

(1)求证:AE⊥DE;
(2)设以AD为直径的半圆交AB于F,连结DF交AE于G,已知CD=5,AE=8.
①求BC的长;
②求 值.

查看答案和解析>>

同步练习册答案