精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,正方形ABOD的边长为a,O为原点,点B在x轴的负半轴上,点D在y轴的正半轴上,直线OE的解析式为y=2x,直线CF过x轴上的一点C(-
3
5
a
,0)精英家教网且与OE平行,现正方形以每秒
a
10
的速度匀速沿x轴正方向平行移动,设运动时间为t秒,正方形被夹在直线OE和CF间的部分的面积为S.
(1)当0≤t<4时,写出S与t的函数关系式;
(2)当4≤t≤5时,写出S与t的函数关系式,在这个范围内S有无最大值?若有,请求出最大值,若没有请说明理由.
分析:(1)易知BC=
2
5
a,根据时间的取值范围和正方形的速度可知当0≤t<4时,B位于C点左侧.那么重合部分的多边形的面积可用平行四边形的面积-△NPQ的面积来求解.可先求出P、C的坐标,然后根据△PNQ与△PDO相似,用相似比求出面积比,进而得出△PNQ的面积.然后按上面所说的多边形的面积计算方法得出S,t的函数关系式;
(2)当4≤t≤5时,重合部分可用平行四边形COPG的面积-△PNQ的面积-△CB1R的面积来求得.方法同(1),得出S,t的函数关系后,可根据函数的性质和自变量的取值范围求出S的最大值及对应的t的值.
解答:精英家教网解:(1)当0≤t<4时,如图1,由图可知OM=
a
10
t

设经过t秒后,正方形移动到A1B1MN
∵当t=4时,BB1=OM=
a
10
×4=
2
5
a
∴点B1在C点左侧
∴夹在两平行线间的部分是多边形COQNG,其面积为:
平行四边形COPG-△NPQ的面积.
∵CO=
3
5
a
,OD=a
∴四边形COPG面积=
3
5
a2
又∵点P的纵坐标为a,代入y=2x得P(
a
2
,a)
∴DP=
a
2
,NP=
a
2
-
a
10
t
由y=2x知:NQ=2NP
∴△NPQ面积=
1
2
•NP•NQ=(
a
2
-
a
10
t)2
∴S=
3
5
a2-(
a
2
-
a
10
t)2=
3
5
a2-
a2
100
(5-t)2=
a2
100
[60-(5-t)2];

(2)当4≤t≤5时,如图2,这时正方形移动到A1B1MN精英家教网
∵当4≤t≤5时,
2
5
a
≤BB1
1
2
a
,点B1在C、O点之间
∴夹在两平行线间的部分是B1OQNGR,
即平行四边形COPG被切掉了两个小三角形△NPQ和△CB1R,其面积为:
平行四边形COPG的面积-△NPQ的面积-△CB1R的面积
与(1)同理,OM=
a
10
t,NP=
a
2
-
a
10
t,S△NPQ=(
a
2
-
a
10
t)2
∵CO=
3
5
a
,CM=
3
5
a+
a
10
t,B1M=a,
∴CB1=CM-B1M=
3
5
a+
a
10
t-a=
a
10
t-
2
5
a,
∴S△CB1R=
1
2
CB1•B1R=(CB12=(
a
10
t-
2
5
a)2,
∴S=
3
5
a2-(
1
2
a-
a
10
t)2-(
a
10
t-
2
5
a)2=
3
5
a2-
a2
100
[2(t-
9
2
2+
1
2
],
∴当t=
9
2
时,S有最大值,Smax=
119
200
a2
点评:本题考查二次函数与相似三角形、平行四边形、正方形、图形的面积求法等知识的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案