精英家教网 > 初中数学 > 题目详情
如图,已知二次函数的图象过A(2,0),B(0,-1)和C(4,5)三点。
(1)求二次函数的解析式;
(2)设二次函数的图象与轴的另一个交点为D,求点D的坐标;
(3)在同一坐标系中画出直线,并写出当在什么范围内时,一次函数的值大于二次函数的值。
(1)二次函数的解析式为
(2)点D的坐标为(-1,0)
(3)X的取值范围为了-1<x<4

试题分析:(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;
(2)令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;
(3)画出图象,再根据图象直接得出答案.
试题解析:(1)∵函数图象过点A(2,0)、B(0,1)和C(4,5)三点

∴二次函数的解析式为
(2)当Y=0时

∴x1=2,x2=-1
∴点D的坐标为(-1,0)
(3)画图正确

X的取值范围为了-1<x<4
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

抛物线y=x2+6x+10的对称轴是(  )
A.x=3B.x=6C.x=-3D.x=-6

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=x2+bx+c的图象如图所示,则函数值y<0时,对应x的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:
①直线y=0是抛物线y=
1
4
x2的切线;
②直线x=-2与抛物线y=
1
4
x2相切于点(-2,1);
③若直线y=x+b与抛物线y=
1
4
x2相切,则相切于点(2,1);
④若直线y=kx-2与抛物线y=
1
4
x2相切,则实数k=
2

其中正确命题的是(  )
A.①②④B.①③C.②③D.①③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.
(1)求tan∠DBC的值;
(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=-
1
2
x2+4x+c
的图象经过A(2,0).
(1)求c的值;
(2)当x为何值时,这个二次函数有最大值,最大值为多少;
(3)若二次函数与y轴相交于的B点,且该二次函数的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B,C重合),现将△PCD沿直线PD折叠,使点C落下点C′处;作∠BPC′的平分线交AB于点E.设BP=x,BE=y,那么y关于x的函数图象大致应为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知二次函数 =,当<<时, 的增大而增大,则实数a的取值范围是  (  )
A.>B.<C.>0D.<<

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在矩形ABCD中,AB=2,BC=6,点E为对角线AC的中点,点P在边BC上,连接PE、PA.当点P在BC上运动时,设BP=x,△APE的周长为y,下列图象中,能表示y与x的函数关系的图象大致是(   )

A. B.  C.  D.

查看答案和解析>>

同步练习册答案