精英家教网 > 初中数学 > 题目详情
(2014•静安区一模)已知点G是△ABC的重心,AB=AC=5,BC=8,那么AG=
2
2
分析:根据题意画出图形,连接AG并延长交BC于点D,由等腰三角形的性质可得出AD⊥BC,再根据勾股定理求出AD的长,由三角形重心的性质即可得出AG的长.
解答:解:如图所示:连接AG并延长交BC于点D,
∵G是△ABC的重心,AB=AC=5,BC=8,
∴AD⊥BC,BD=
1
2
BC=
1
2
×8=4,
∴AD=
AB2-BD2
=
52-42
=3,
∴AG=
2
3
AD=
2
3
×3=2.
故答案为:2.
点评:本题考查的是三角形的重心,熟知重心到顶点的距离与重心到对边中点的距离之比为2:1是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2014•静安区一模)如果抛物线y=mx2+(m-3)x-m+2经过原点,那么m的值等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2014•静安区一模)如图,已知平行四边形ABCD中,向量
BD
BA
BC
方向上的分量分别是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2014•静安区一模)抛物线y=-(x-2)2+1经过平移后与抛物线y=-(x+1)2-2重合,那么平移的方法可以是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2014•静安区一模)在△ABC,点D、E分别在边AB、AC上,如果AD=1,BD=2,那么由下列条件能够判定DE∥BC的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2014•静安区一模)如图,已知AB、CD分别表示两幢相距30米的大楼,小明在大楼底部点B处观察,当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,那么大楼AB的高度为(  )

查看答案和解析>>

同步练习册答案