【题目】如图,抛物线y=ax2+bx(a>0)经过原点O和点A(2,0),B(﹣1,2)三点.
(1)写出抛物线的对称轴和顶点坐标;
(2)点(x1,y1),(x2,y2)在抛物线上,若x1<x2<1,比较y1,y2的大小,并说明理由;
(3)点C与点B关于抛物线的对称轴对称,求直线AC的函数解析式.
【答案】(1)对称轴为x=1,顶点坐标(1,﹣);(2)y1>y2,理由见解析;(3)y=2x﹣4
【解析】
(1)根据图示可以直接写出抛物线的对称轴,求出抛物线的解析式即可求得顶点坐标;
(2)根据抛物线的对称轴与x轴的交点坐标可以求得该抛物线的对称轴是直线x=1,然后根据函数图象的增减性进行解题;
(3)根据已知条件可以求得点C的坐标是(3,2),所以根据点A、C的坐标来求直线AC的函数关系式.
解:(1)∵抛物线y=ax2+bx(a>0)经过原点O和点A(2,0),
∴,
∴a=,b=﹣,
∴抛物线的解析式为y==,
∴抛物线的对称轴为x=1,顶点坐标(1,﹣).
(2)∵该抛物线开口向上,对称轴为直线x=1,
∴当x<1时,y随x的增大而减小,而x1<x2<1,
故y1>y2,
(3)∵点B(﹣1,2)在该抛物线上,点C与点B关于抛物线的对称轴x=1对称,
∴C(3,2),
设直线AC的函数解析式为y=kx+m,则
,
解得
∴直线AC的函数解析式为y=2x﹣4.
科目:初中数学 来源: 题型:
【题目】如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一条长为48cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.
(1)要使这两个正方形的面积之和等于74cm2,那么这段铁丝剪成两段后的长度分别是多少?
(2)两个正方形的面积之和可能等于68cm2吗?若能,求出两段铁丝的长度;若不能,请说明理由.
(3)该怎么剪,才能使这两个正方形的面积之和为最小,最小值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=1,将菱形OABC绕原点顺时针旋转105°至OA'B′C'的位置,则点B'的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.
(1)在旋转过程中,
①当A,D,M三点在同一直线上时,求AM的长.
②当A,D,M三点为同一直角三角形的顶点时,求AM的长.
(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程2x2﹣(4k+3)x+2k2+k=0.
(1)当k取何值时,方程有两个不相等的实数根?
(2)在(1)的条件下,若k是满足条件的最小整数,求方程的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点且与AC的另一个交点为F.
(1)求证:DE是⊙O的切线;
(2)AB=12,∠BAC=60°,求线段DE,EF与所围成的阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知抛物线与一次函数的图象相交于,两点,点是抛物线上不与,重合的一个动点.
(1)请求出,,的值;
(2)当点在直线上方时,过点作轴的平行线交直线于点,设点的横坐标为,的长度为,求出关于的解析式;
(3)在(2)的基础上,设面积为,求出关于的解析式,并求出当取何值时,取最大值,最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙ O,其外角平分线AD交⊙ O于D,DM⊥ AC于M,下列结论中正确的是 ____________。
①DB=DC; ②AC+AB=2CM;③AC﹣AB=2AM; ④.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com