【题目】请阅读下列材料:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),从而得到∠BPC=∠AP′B=__________;,进而求出等边△ABC的边长为__________;
问题得到解决.
请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC度数的大小和正方形ABCD的边长.
【答案】(1)150°,;(2)135°,
【解析】试题分析:(1)利用旋转的性质,得到全等三角形.
(2)利用(1)中的解题思路,把△BPC,旋转,到△BP’A,连接PP’,BP’,容易证明△APP’是直角三角形,∠BP’E=45°,已知边BP’=BP=,BE=BP’=1,勾股定理可求得正方形边长.
(1)150°
(2)将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.
∴AP′=PC=1,BP=BP′=;
连接PP′,在Rt△BP′P中,
∵BP=BP′=,∠PBP′=90°,
∴PP′=2,∠BP′P=45°;
在△AP′P中,AP′=1,PP′=2,AP=,
∵,即AP′2+PP′2=AP2;
∴△AP′P是直角三角形,即∠AP′P=90°,
∴∠AP′B=135°,
∴∠BPC=∠AP′B=135°.
过点B作BE⊥AP′,交AP′的延长线于点E;则△BEP′是等腰直角三角形,
∴∠EP′B=45°,
∴EP′=BE=1,
∴AE=2;
∴在Rt△ABE中,由勾股定理,得AB=;
∴∠BPC=135°,正方形边长为.
科目:初中数学 来源: 题型:
【题目】为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况、针对这个问题,下面说法正确的是( )
A. 300名学生是总体B. 每名学生是个体
C. 50名学生的视力情况是所抽取的一个样本D. 这个样本容量是300
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).
设这种双肩包每天的销售利润为w元.
(1)求w与x之间的函数解析式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某个观测站测得:空气中pm2.5含量为每立方米0.0000023g,则将0.0000023用科学记数法表示为( )
A. 2.3×10﹣7 B. 2.3×10﹣6 C. 2.3×10﹣5 D. 2.3×10﹣4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com