精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC内接于⊙O,AB为直径,弦CF⊥AB于E,C是的中点,连接BD,连接AD,分别交CE、BC于点P、Q.
(1)求证:P是AQ的中点;
(2)若tan∠ABC=,CF=8,求CQ的长.

【答案】分析:(1)由题意推出∠AQC=∠PCQ,即可得PC=PQ,由,推出∠CAD=∠ACE,即可得PA=PC,即可推出P是AQ的中点;
(2)根据已知首先推出BE的长度,然后即可得BC的长度,在Rt△ACB中,由tan∠ABC=,求出AC的长度,求证Rt△ACB∽Rt△QCA后,即可得CQ的长度.
解答:(1)证明:∵C是的中点,
=
∴∠CAD=∠ABC
∵AB是⊙O的直径,
∴∠ACB=90°.
∴∠CAD+∠AQC=90°,
∵CE⊥AB,
∴∠ABC+∠PCQ=90°,
∴∠AQC=∠PCQ
∴在△PCQ中,PC=PQ,
∵CE⊥AB,
=

∴∠CAD=∠ACE.
∴在△APC中,PA=PC,
∴PA=PC=PQ
∴P是AQ的中点.

(2)解:∵CE⊥AB于E,
∴在Rt△BCE中,由tan∠ABC=
∵CF=8,
∴CE=4,
得:BE==
∴由勾股定理,得BC=
∵AB是⊙O的直径,
∴在Rt△ACB中,由tan∠ABC=,BC=
得AC=BC=5.
∵AB为直径,∠CBA=∠CAQ,
∴Rt△ACB∽Rt△QCA,
∴AC2=CQ•BC
∴CQ=
点评:本题主要考查相似三角形的判定和性质、勾股定理、圆周角定理、解直角三角形,关键在于(1)∠CAD=∠ABC,∠CAD=∠ACE,(2)根据正切值求出BE、BC的长度,然后Rt△ACB∽Rt△QCA,求出CQ的长度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案