精英家教网 > 初中数学 > 题目详情
19.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,BC=6,DE=2,当△ADE面积为3时,则△ABC的面积为27.

分析 先证明△ADE和△ABC相似,再根据相似三角形面积的比等于相似比的平方解答.

解答 解:∵DE∥BC,
∴△ADE∽△ABC,
∴$\frac{{S}_{△ADE}}{{S}_{△ABC}}$=($\frac{DE}{BC}$)2=$\frac{1}{9}$,
∵△ADE的面积为3,
∴S△ABC=3×9=27;
故答案为:27.

点评 本题主要考查相似三角形面积的比等于相似比的平方的性质,熟练掌握性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.四边形ABCD中,∠BAD的角平分线与边BC交于点E,∠ADC的角平分线交AE于点O,且点O在四边形ABCD的内部.
(1)如图1,若AD∥BC,∠B=70°,∠C=80°,则∠DOE=105°.
(2)如图2,试探索∠B、∠C、∠DOE之间的数量关系,并将你的探索过程写下来

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,△ABC是以BC为底边的等腰三角形,AB=3,BC=5,P是折线BAC上动点(不与B,C重合),过P作BC的垂线l交BC于D,连接AD.当△ACD是等腰三角形时,BP的长是$\frac{12}{5}$或$\frac{\sqrt{7291}}{25}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.在四边形ABCD中,∠A+∠B=120°,∠ADC与∠BCD的平分线交于P点,则∠CPD=60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,在△ABC中,请用平行线的性质证明∠A+∠B+∠C=180°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.因式分解:x4+x3-3x2-4x-4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图1和2,直线MN和线段AB相交于点O,∠1=∠2=45°.
(1)如图1,试说明AB⊥BD的理由;
(2)如图2,如果AO=BO,试说明AC=BD的理由.
完成下列括号填空:
过点B作BE∥AC交MV于E.
∴∠A=∠EBO(两直线平行,内错角相等)
又AO=BO,∠AOC=∠BOE(对顶角相等)
∴△AOC≌△BOE
∴AC=BE,∠ACO=∠BEO
又∠1+∠ACO=180°,∠BED+∠BEO=180°
∴BED=∠1,又∠1=∠2
∴∠BED=∠2
∴BD=BE(等角对等边)
∴AC=BD.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.一个正多边形的周长是100,边长为10,则正多边形的边数n═10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.课堂上,小明与同学们讨论下面五边形中的问题:如图1,在五边形中ABCDE,AB=BC=CD,∠ABC=∠BCD=120°,∠EAB=∠EDC,小明发现图1中AE=DE;小亮在图1中连接AD后,得到图3,发现AD=2BC.

请在下面的、两题中任选一题解答.
A:为证明AE=DE,小明延长EA,ED分别交直线BC与点M、点N,如图2.请利用小明所引的辅助线证明AE=DE=
B:请你借助图3证明AD=2BC
我选择A或B题.

查看答案和解析>>

同步练习册答案