精英家教网 > 初中数学 > 题目详情
当m
m>-6且m≠-3
m>-6且m≠-3
时,方程
x
x-3
=2-
m
x-3
的解是正数.
分析:找出分式方程的最简公分母x-3,去分母后去括号,移项将x的系数化为1求出分式方程的解,由分式方程的解为正数,得到其解大于0,求出m的范围,再由分式的分母不为0,即可得到满足题意m的范围.
解答:解:
x
x-3
=2-
m
x-3

去分母得:x=2(x-3)-m,
去括号得:x=2x-6-m,
解得:x=m+6,
由题意得:m+6>0,且m+6≠3,
解得:m>-6且m≠-3.
故答案为:m>-6且m≠-3
点评:此题考查了分式方程的解,以及解分式方程,注意考虑分母不为0这个隐含条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

平面上的点M关于直线l有唯一的轴对称点M′,这样平面上的任意一点就与该点关于这条直线的轴对称点之间建立了一种对应关系,我们把这种对应关系叫做点M关于直线l的轴对称变换,记为M
M(l)
M′(l),点M的轴对称点就记为M′(l),如图(1)所示.如果先作平面上的点M关于直线l的轴对称变换,M
M(l)
M′(l),M得到对应点M′(l),然后,再作M′(l)关于另外一条直线m的轴对称变换,M′(l)
M(m)
M″(l,m),这样点M就与该点关于直线l和m的轴对称点M″(l,m)之 间建立了一种对应关系,我们把这种对应关系就叫做点M关于直线l和m的轴对称变换,M′(l)
M(m)
M″(l,m),记为,M的对应点就记为M″(l,m).如图(2),M是平面上的一点,直线l、m相交所成的角为θ(0°<θ≤90°),且交点为O,请回答如下问题:
(1)在备用图中,请画出M′(l)和M″(l,m)(保留画图痕迹).
(2)当θ=
90
90
°时,M与M″(l,m)关于点O成中心对称.
(3)试探究∠MOM′′与θ之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1,x2是一元二次方程ax2+bx+c=0(a≠0,a,b,c为系数且为常数)的两个根,则x1+x2=-
b
a
,x1•x2=
c
a
.这个定理叫做韦达定理.
如:x1,x2是方程x2+2x-1=0的两个根,则x1+x2=-2、x1•x2=-1
已知:M、N是方程x2-x-1=0的两根,
记S1=M+N;S2=M2+N2,…Sn=Mm+Nn
(1)S1=_____,S2=______,S3=_______,S4=_______,(直接写出答案)
(2)当n为不小于3的整数时,有(1)猜想SnSn-1Sn-2之间有何关系?
(3)利用(2)猜想[
1+
5
2
]8+[
1-
5
2
]8

查看答案和解析>>

科目:初中数学 来源: 题型:

平面上的点M关于直线l有唯一的轴对称点M′,这样平面上的任意一点就与该点关于这条直线的轴对称点之间建立了一种对应关系,我们把这种对应关系叫做点M关于直线l的轴对称变换,记为M
M(l)
M′(l)
,点M的轴对称点就记为M′(l),如图(1)所示.如果先作平面上的点M关于直线l的轴对称变换M
M(l)
M′(l)
,得到对应点M′(l),然后,再作M′(l)关于另外一条直线m的轴对称变换M′(l)
M(m)
Mn(l,m)
,这样点M就与该点关于直线l和m的轴对称点M′′(l,m)之间建立了一种对应关系,我们把这种对应关系就叫做点M关于直线l和m的轴对称变换,记为M′(l)
M(m)
Mn(l,m)
,M的对应点就记为M′′(l,m).如图(2),M是平面上的一点,直线l、m相交所成的角为θ(0°<θ≤90°),且交点为O,请回答如下问题:
(1)在图(2)中,求作M′(l)和M′′(l,m).(要求保留作图痕迹)
(2)当θ=
 
°时,M与M′′(l,m)关于点O成中心对称.
(A)30(B)45(C)60(D)90
(3)(在以下两题中任选一题作答)
①试探讨∠MOM′′(l,m)与θ之间的数量关系,并证明你的结论.
②试探讨OM与OM′′(l,m)间的数量关系,并证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2012年江苏省常州市前黄实验学校中考适应性考试数学试卷(解析版) 题型:解答题

平面上的点M关于直线l有唯一的轴对称点M′,这样平面上的任意一点就与该点关于这条直线的轴对称点之间建立了一种对应关系,我们把这种对应关系叫做点M关于直线l的轴对称变换,记为MM′(l),点M的轴对称点就记为M′(l),如图(1)所示.如果先作平面上的点M关于直线l的轴对称变换,MM′(l),M得到对应点M′(l),然后,再作M′(l)关于另外一条直线m的轴对称变换,M′(l)M″(l,m),这样点M就与该点关于直线l和m的轴对称点M″(l,m)之 间建立了一种对应关系,我们把这种对应关系就叫做点M关于直线l和m的轴对称变换,M′(l)M″(l,m),记为,M的对应点就记为M″(l,m).如图(2),M是平面上的一点,直线l、m相交所成的角为θ(0°<θ≤90°),且交点为O,请回答如下问题:
(1)在备用图中,请画出M′(l)和M″(l,m)(保留画图痕迹).
(2)当θ=______°时,M与M″(l,m)关于点O成中心对称.
(3)试探究∠MOM′′与θ之间的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案