精英家教网 > 初中数学 > 题目详情
如图,△ABC为正三角形,面积为S.D1,E1,F1分别是△ABC三边上的点,且AD1=BE1=CF1=
1
2
AB,可得△D1E1F1,则△D1E1F1的面积S1=______;如,D2,E2,F2分别是△ABC三边上的点,且AD2=BE2=CF2=
1
3
AB,则△D2E2F2的面积S2=______;按照这样的思路探索下去,Dn,En,Fn分别是△ABC三边上的点,且
ADn=BEn=CFn=
1
n+1
AB,则Sn=______.
∵△ABC为正三角形,
∴AB=BC=AC,∠A=∠B=∠C=60°,
∵AD1=BE1=CF1=
1
2
AB,
∴BD1=CE1=AF1=
1
2
AB,
∴△AD1F1≌△BD1E1≌△CE1F1
设等边△ABC的边长为a,
则S=
1
2
a2sin60°,
△AD1F1的面积=
1
2
×
1
2
a•
1
2
a•sin60°=
1
4
S,
∴△D1E1F1的面积S1=S-3×
1
4
S=
1
4
S;

同理,AD2=BE2=CF2=
1
3
AB时,
BD2=CE2=AF2=
2
3
AB,
△AD2F2的面积S2=
1
2
×
1
3
a•
2
3
a•sin60°=
2
9
S,
△D2E2F2的面积S2=S-3×
2
9
S=
1
3
S;

ADn=BEn=CFn=
1
n+1
AB时,
BDn=CEn=AFn=
n
n+1
AB,
△ADnFn的面积=
1
2
×
1
n+1
a•
n
n+1
a•sin60°=
n
(n+1)2
S,
△DnEnFn的面积Sn=S-3×
n
(n+1)2
S=
n2-n+1
(n+1)2
S.
故答案为:
1
4
S,
1
3
S,
n2-n+1
(n+1)2
S.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

下列说法中,正确的是(  )
A.等边三角形的“三线合一”
B.有一个角是60°的三角形是等边三角形
C.在直角三角形中,直角边等于斜边的一半
D.有两个角相等的三角形是等边三角形

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直角坐标系中,点A的坐标为(a,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>a>0),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.
(1)求证:OC=AD.
(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.
(3)当C点运动到使OA:AC=1:3时,求出此时D点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在边长为20cm的等边三角形ABC纸片中,以顶点C为圆心,以此三角形的高为半径画弧分别交AC、BC于点D、E,则扇形CDE所围的圆锥(不计接缝)的底圆半径为(  )
A.
5
3
3
cm
B.
10
3
3
cm
C.5
3
cm
D.10
3
cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:等边△ABC的边长为a.
探究(1):如图1,过等边△ABC的顶点A、B、C依次作AB、BC、CA的垂线围成△MNG,求证:△MNG是等边三角形且MN=
3
a;
探究(2):在等边△ABC内取一点O,过点O分别作OD⊥AB、OE⊥BC、OF⊥CA,垂足分别为点D、E、F.
①如图2,若点O是△ABC的重心,我们可利用三角形面积公式及等边三角形性质得到两个正确结论(不必证明):结论1. OD+OE+OF=
3
2
a;结论2. AD+BE+CF=
3
2
a;
②如图3,若点O是等边△ABC内任意一点,则上述结论1,2是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:△ABC是等边三角形?
(1)若AD=BE=CF,求证△DEF是等边三角形.?
(2)请问(1)的逆命题成立吗?若成立,请证明,若不成立,请用反例说明?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,木工师傅从边长为90cm的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为(  )
A.34cmB.32cmC.30cmD.28cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.

(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立,请证明,若不成立,请说明理由;
(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.

查看答案和解析>>

同步练习册答案