【题目】如图,菱形ABCD中,∠A是锐角,E为边AD上一点,△ABE沿着BE折叠,使点A的对应点F恰好落在边CD上,连接EF,BF,给出下列结论:
①若∠A=70°,则∠ABE=35°;②若点F是CD的中点,则S△ABES菱形ABCD
下列判断正确的是( )
A. ①,②都对B. ①,②都错C. ①对,②错D. ①错,②对
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.
(1)这条抛物线的对称轴是 , 直线PQ与x轴所夹锐角的度数是;
(2)若两个三角形面积满足S△POQ= S△PAQ , 求m的值;
(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PDDQ的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=4cm,BE=5cm,点E是AD边上的一点,AE、DE分别长acm.bcm,满足(a-3)2+|2a+b-9|=0.动点P从B点出发,以2cm/s的速度沿B→C→D运动,最终到达点D,设运动时间为t s.
(1)a=______cm,b=______cm;
(2)t为何值时,EP把四边形BCDE的周长平分?
(3)另有一点Q从点E出发,按照E→D→C的路径运动,且速度为1cm/s,若P、Q两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t为何值时,△BPQ的面积等于6cm2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法,例如:
①用配方法分解因式:.
解:原式
②,利用配方法求的最小值.
解:
∵,
∴当时,有最小值1.
请根据上述材料解决下列问题:
(1)在横线上添加一个常数,使之成为完全平方式:________.
(2)用配方法因式分解:.
(3)若,求的最小值.
(4)已知,则的值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“十一”黄金周,坚胜家电城大力促销,收银情况一直看好下表为当天与前一天的营业额的涨跌情况已知9月30日的营业额为26万元.
10月1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
4 | 3 | 2 | 0 |
|
|
|
黄金周内收入最低的哪一天?直接回答,不必写过程.
黄金周内平均每天的营业额是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).
(1)求此抛物线的解析式;
(2)写出顶点坐标及对称轴;
(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为选拔参加八年级数学“拓展性课程”活动人选,数学李老师对本班甲、乙两名学生以前经历的10次测验成绩(分)进行了整理、分析(见图①):
(1)写出a,b的值;
(2)如要推选1名学生参加,你推荐谁?请说明你推荐的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知 为正方形 的中心,分别延长 到点 , 到点 ,使 , ,连结 ,将△ 绕点 逆时针旋转 角得到△ (如图2).连结 、 .
(Ⅰ)探究 与 的数量关系,并给予证明;
(Ⅱ)当 , 时,求:
① 的度数;
② 的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:对于二次三项式 ,能直接用公式法进行因式分解,得到 ,但对于二次三项式 ,就不能直接用公式法了.我们可以采用这样的方法:在二次三项式 中先加上一项 ,使其成为完全平方式,再减去 这项,使整个式子的值不变,于是:
像这样把二次三项式分解因式的方法叫做添(拆)项法.
问题解决:请用上述方法将二次三项式 分解因式.
(2)拓展应用:二次三项式 有最小值或有最大值吗?如果有,请你求出来并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com