精英家教网 > 初中数学 > 题目详情
17.解不等式组:$\left\{\begin{array}{l}{2(x+3)>4}\\{\frac{x-1}{3}≥\frac{x}{2}-1}\end{array}\right.$.

分析 分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.

解答 解:由①得,x>-1,
由②得,x≤4,
∴不等式组的解集为-1<x≤4.

点评 本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.某公司开发了一种新产品,现要在甲地或者乙地进行销售,设年销售量为x(件),其中x>0.若在甲地销售,每件售价y(元)与x之间的函数关系式为y=-$\frac{1}{10}$x+100,每件成本为20元,设此时的年销售利润为w(元)(利润=销售额-成本);
若在乙地销售,受各种不确定因素的影响,每件成本为a元(a为常数,15≤a≤25 ),每件售价为106元,销售x(件)每年还需缴纳$\frac{1}{10}{x^2}$元的附加费,设此时的年销售利润为w(元)(利润=销售额-成本-附加费);
(1)当a=16时且x=100时,w=8000元;
(2)求w与x之间的函数关系式(不必写出x的取值范围),并求x为何值时,w最大以及最大值是多少?
(3)为完成x件的年销售任务,请你通过分析帮助公司决策,应选择在甲地还是在乙地销售才能使该公司所获年利润最大.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,AB是⊙O的直径,AC是切⊙O于A的切线,BC交⊙O于点D,E是劣弧$\widehat{BD}$的中点,连接AE交BC于点F,若cosC=$\frac{2}{3}$,AC=6,则BF的长为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长,实践活动和艺术特长四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:

(1)被调查的总人数为60人,扇形统计图中m的值为20;
(2)补全条形统计图;
(3)已知该校有800名学生,计划开设“体育特长类”课程,每班安排20人,问学校开设多少个“体育特长类”课程的班级比较合理?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图所示的直角坐标系中,四边形ABCD的四个顶点的坐标分别是:A(1,2),B(3,-2),C(5,1),D(4,4)
(1)求四边形ABCD的面积;
(2)把四边形ABCD向左平移3个单位得四边形A1B1C1D1,写出平移后四边形各个顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,D为BC上一点,且AB=5,BD=3,AD=4,且△ABC的周长为18,求AC的长和△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,过点A作BE的垂线交BE于点F,交BC于点G,连接EG,CF.
(1)求证:四边形ABGE是菱形;
(2)若∠ABC=60°,AB=4,AD=5,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知点A在反比例函数y=$\frac{k}{x}$(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E,若△BCE的面积为8.
(1)求证:△EOB∽△ABC;
(2)求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)解方程:$\frac{2-x}{x-3}$+3=$\frac{2}{3-x}$
(2)解不等式:2x-3≤$\frac{1}{2}$(x+2)

查看答案和解析>>

同步练习册答案