精英家教网 > 初中数学 > 题目详情
如图,A为双曲线y=上一点,AD⊥y轴于点D,将直线AD向下平移交双曲线于C,交y轴于E,延长AC交x轴于点B,=2,则=   
【答案】分析:设E的纵坐标是a,则D的纵坐标是3a,则A的纵坐标是3a,则AD,CE可以利用a表示出来,然后根据相似三角形的对应边的毕相等,即可求得BN的长,即可得到OB的长,然后代入式子化简即可求解.
解答:解:作AN⊥y轴,交CE与M.则AD=EM=ON.
∵AD∥CE∥y轴,
==2,
设E的纵坐标是a,则D的纵坐标是3a,A的纵坐标是3a,C的纵坐标是a.
把y=3a代入函数y=得到:y=,则AD=
把y=a代入函数y=得到:y=,则CE=
则CM=CE-EM=CE-AD=-=
∵CE∥y轴,
==
∴BN=CM=
∴OB=BN+ON=BN+AD=+=
==1.
故答案是:1.
点评:本题考查了反比例函数与相似三角形的性质的综合应用,正确表示出BN的长度是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•兰州)如图,M为双曲线y=
3
x
上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•历城区二模)如图,M为双曲线y=
2x
上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于D、C两点,若直线y=-x+m与y轴交于点A,与x轴交于点B,则AD•BC的值为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,A为双曲线y=
6
x
上一点,AD⊥y轴于点D,将直线AD向下平移交双曲线于C,交y轴于E,延长AC交x轴于点B,
AC
BC
=2,则
OB-AD
CE
=
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•天门模拟)如图,B为双曲线y=
1x
(x>0)上一点,直线AB平行于y轴交直线y=x于点A,求(OB+AB)(OB-AB)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,C为双曲线y=
k
x
(x>0)上一点,线段AE与y轴交于点E,且AE=EC,将线段AC平移至BD处,点D恰好也在双曲线y=
k
x
(x>0)上,若A(-1,0),B(0,-2).则k=
4
4

查看答案和解析>>

同步练习册答案