精英家教网 > 初中数学 > 题目详情
如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).
(1)求线段AD所在直线的函数表达式;
(2)动点P从点A出发,以每秒1个单位长度的速度,按照A?D?C?B?A的顺序在菱形的边上匀速运动一周,设运动时间为t秒、求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切.
(1)∵点A的坐标为(-2,0),∠BAD=60°,∠AOD=90°,
∴OD=OA•tan60°=2
3

∴点D的坐标为(0,2
3
),(1分)
设直线AD的函数表达式为y=kx+b,
-2k+b=0
b=2
3

解得
k=
3
b=2
3

∴直线AD的函数表达式为y=
3
x+2
3
.(3分)

(2)∵四边形ABCD是菱形,
∴∠DCB=∠BAD=60°,
∴∠1=∠2=∠3=∠4=30°,
AD=DC=CB=BA=4,(5分)
如图所示:
①点P在AD上与AC相切时,
连接P1E,则P1E⊥AC,P1E=r,
∵∠1=30°,
∴AP1=2r=2,
∴t1=2.(6分)
②点P在DC上与AC相切时,
CP2=2r=2,
∴AD+DP2=6,
∴t2=6.(7分)
③点P在BC上与AC相切时,
CP3=2r=2,
∴AD+DC+CP3=10,
∴t3=10.(8分)
④点P在AB上与AC相切时,
AP4=2r=2,
∴AD+DC+CB+BP4=14,
∴t4=14,
∴当t=2、6、10、14时,以点P为圆心、以1为半径的圆与对角线AC相切.(9分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中∠C=90°、∠A=30°,在AC边上取点O画圆使⊙O经过A、B两点,
(1)求证:以O为圆心,以OC为半径的圆与AB相切.
(2)下列结论正确的序号是______.(少选酌情给分,多选、错均不给分)
①AO=2CO;
②AO=BC;
③延长BC交⊙O与D,则A、B、D是⊙O的三等分点.
④图中阴影面积为:(
1
3
π+
3
8
)•OA2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知⊙O1经过A(-4,2),B(-3,3),C(-1,-1),O(0,0)四点,一次函数y=-x-2的图象是直线l,直线l与y轴交于点D.
(1)在右边的平面直角坐标系中画出⊙O1,直线l与⊙O1的交点坐标为______;
(2)若⊙O1上存在整点P(横坐标与纵坐标均为整数的点称为整点),使得△APD为等腰三角形,所有满足条件的点P坐标为______;
(3)将⊙O1沿x轴向右平移______个单位时,⊙O1与y相切;
(4)将⊙O1沿x轴向右平移______个单位时,⊙O1与l相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

定义:定点与⊙O上任意一点之间距离的最小值称为点与⊙O之间的距离.现有一矩形ABCD如图所示,AB=14,BC=12,⊙O与矩形的边AB、BC、CD分别相切于点E、F、G,则点A与⊙O之间的距离为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.
(1)证明PA是⊙O的切线;
(2)求点B的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知AB、AC分别为⊙O的直径和弦,D为
BC
的中点,DE垂直于AC的延长线于E,连接BC,若DE=6cm,CE=2cm,下列结论一定错误的是(  )
A.DE是⊙O的切线B.直径AB长为20cm
C.弦AC长为16cmD.C为
AD
的中点

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA=30°,则OB的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

两同心圆的半径分别是10和6,大圆的弦AB长16.AB与小圆的位置关系是______.

查看答案和解析>>

同步练习册答案