精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E.若AB=CD=2,求CE的长.
如图,由切割线定理,得
CD2=CB•CA,(2分)
CD2=CB(AB+CB),
CB2+2CB-4=0,
解得CB=
5
-1
(负数舍去)
连接OD,则OD⊥CD,又EB与⊙O相切,
∴EB⊥OC,
∴Rt△ODCRt△EBC,(6分)
于是
CE
OC
=
BC
CD
,即
CE
5
=
5
-1
2

∴CE=
5-
5
2

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

△ABC中,∠C=90°,AB=4cm,BC=2cm,以点A为圆心,以3.5cm长为半径画圆,则点C在圆A______,点B在圆A______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图.AD、AH分别是△ABC(其中AB>AC)的角平分线、高线,M点是AD的中点,△MDH的外接圆交CM于E,求证∠AEB=90°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图示PA、PB是⊙O的切线,切点分别为A、B,直线EF也是⊙O的切线,Q是切点,交PA、PB于E、F点.若PA=10cm,则△PEF的周长为______cm;若∠APB=50°,则∠EOF的度数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,四边形ABCD是⊙O的外切等腰梯形,其周长为20,则梯形ABCD的中位线长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙0的半径为1,圆心0到直线l的距离为2,过l上任一点A作⊙0的切线,切点为B,则线段AB的最小值为(  )
A.1B.
2
C.
3
D.2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O1和⊙O2外切于点A,直线BD切于⊙O1点B,交⊙O2于C、D,直线DA交于⊙O1点E.
求证:①∠BAC=∠ABC+∠D;
②连接BE,你还能推出哪些结论.(不再标注其他字母,不再添加辅助线,不写推理过程)写出五条结论即可.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PA切OO于点A,PO交⊙O于C,延长PO交⊙O于点B,PA=AB,PD平分∠APB交AB于点D,则∠ADP=______.

查看答案和解析>>

同步练习册答案