精英家教网 > 初中数学 > 题目详情
如图在四边形ABCD中,AB=BC=2,CD=3,DA=1,且∠B=90°,求∠DAB的度数.
分析:由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,从而易求∠BAD.
解答:解:如右图所示,连接AC,
∵∠B=90°,AB=BC=2,
∴AC=
AB2+BC2
=2
2
,∠BAC=45°,
又∵CD=3,DA=1,
∴AC2+DA2=8+1=9,CD2=9,
∴AC2+DA2=CD2
∴△ACD是直角三角形,
∴∠CAD=90°,
∴∠DAB=45°+90°=135°.
故∠DAB的度数为135°.
点评:本题考查了等腰三角形的性质、勾股定理、勾股定理的逆定理.解题的关键是连接AC,并证明△ACD是直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图在四边形ABCD中,∠A=∠D、∠B=∠C,试判断AD与BC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图在四边形ABCD中,E是对角线BD上一点,EF∥AD,EM∥BC,则
EF
AD
+
EM
BC
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在四边形ABCD中,∠ACB+∠ADB=180°,∠ABC=∠BAC=60°.
求证:∠ADC=∠BDC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在四边形ABCD中,∠1和∠2分别是∠A和∠C的外角,且∠B+∠D=140°,则∠1+∠2=
140
140
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在四边形ABCD中,已知AB∥CD,∠B=60°,下面是求∠C的度数的推理过程请填出理由,能否求得∠A的度数?如果能请求出∠A的度数,如果不能请补充一个条件使其能求出∠A的度数,请完善解题过程
解:∵AB∥CD(
已知
已知
)∴∠B+∠C=180°(
两直线平行,内错角相等
两直线平行,内错角相等

∵∠B=60°(
已知
已知

∴∠C=120°(
补角的定义
补角的定义

根据题目已知条件,
AD∥BC
AD∥BC

查看答案和解析>>

同步练习册答案