精英家教网 > 初中数学 > 题目详情
13.如图,直线AB、CD相交于点O,OE平分∠BOD;OF平分∠COE,若∠AOC=80°,则∠BOF=30°.

分析 根据对顶角相等求得∠BOD的度数,然后根据角的平分线的定义求得∠EOD的度数,则∠COE即可求得,再根据角平分线的定义求得∠EOF,最后根据∠BOF=∠EOF-∠BOF求解.

解答 解:∵∠BOD=∠AOC=80°,
又∵OE平分∠BOD,
∴∠DOE=$\frac{1}{2}$∠BOD=$\frac{1}{2}$×80°=40°.
∴∠COE=180°-∠DOE=180°-40°=140°,
∵OF平分∠COE,
∴∠EOF=$\frac{1}{2}$∠COE=$\frac{1}{2}$×140°=70°,
∴∠BOF=∠EOF-∠BOF=70°-40°=30°.
故答案是:30.

点评 本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.计算:
(1)$\frac{1}{\sqrt{2}+1}$-$\sqrt{8}$+($\sqrt{3}$-1)0
(2)(2-$\sqrt{3}$)2+(π-3.14)0-(2+$\sqrt{3}$)-1
(3)($\frac{1}{3}$)-1-(2013+$\sqrt{2}$)0+(-2)2×$\sqrt{\frac{1}{16}}$+$\frac{1}{\sqrt{2}-1}$;
(4)$\sqrt{24}$+$\sqrt{12}$-($\sqrt{6}$-$\sqrt{27}$)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,将3枚相同的硬币放入一个3×4的长方形格子中(每个小正方形格子只能放1枚硬币).则所放的3枚硬币中,任意两枚都不同行且不同列的概率为$\frac{6}{55}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算
①(-$\frac{3}{4}$-$\frac{5}{9}$+$\frac{7}{12}$)÷$\frac{1}{36}$
②(-2)2+(-2)÷(-$\frac{2}{3}$)+|-$\frac{1}{16}$|×(-2)4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.某种商品的进价为10元,标价为x元,由于该商品积压,商店准备按标价的8折销售,可保证利润率达到20%,则标价为(  )
A.12元B.20元C.18元D.15元

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在同一平面上,若∠BOA=70°,BO⊥CO,垂足是O,求∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.绝对值小于3的所有整数有0,±1,±2,它们的和是0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$+…+$\frac{1}{1+2+3+4+…+100}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.观察下面的一列数:2,-5,10,-17….根据你发现的规律,第11个数是122,第n(n为大于等于1的整数)个数是(-1)n-1(n2+1).

查看答案和解析>>

同步练习册答案