精英家教网 > 初中数学 > 题目详情
(2008•南通)已知双曲线y=与直线y=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线y=于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值;
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.

【答案】分析:(1)将D的坐标可得B的横坐标,代入解析式可得B的坐标,又有A、B两点关于原点对称,易得k的值;
(2)根据题意B是CD的中点,A、B、M、E四点均在双曲线上,可得BCD的坐标关于mn的表达式,进而可以表示出矩形的面积;代入数据可得答案;
(3)分别作AA1⊥x轴,MM1⊥x轴,垂足分别为A1、M1,设A点的横坐标为a,则B点的横坐标为-a,易得pq关于a的关系式,作p-q可得p-q=
解答:解:(1)∵D(-8,0),
∴B点的横坐标为-8,代入y=x中,得y=-2,
∴B点坐标为(-8,-2),
而A、B两点关于原点对称,∴A(8,2),
∴k=8×2=16;

(2)∵N(0,-n),B是CD的中点,A、B、M、E四点均在双曲线上,
∴mn=k,B(-2m,-),C(-2m,-n),E(-m,-n),
∴S矩形DCNO=2mn=2k,
∴S△DBO=mn=k,
∴S△OEN=
∴S四边形OBCE=S矩形DCNO-S△DBO-S△OEN=k,
∴k=4,
由直线y=x及双曲线,得A(4,1),B(-4,-1),
∴C(-4,-2),M(2,2),
设直线CM的解析式是y=ax+b,
由C、M两点在这条直线上,得
解得
∴直线CM的解析式是

(3)如图1,分别作AA1⊥x轴,MM1⊥x轴,垂足分别为A1、M1
设A点的横坐标为a,则B点的横坐标为-a,
于是p=
同理
∴p-q=
本题也可用相似求解,如图,酌情给分.

点评:此题综合考查了反比例函数,正比例函数等多个知识点此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2008•南通)已知点A(-2,-c)向右平移8个单位得到点A′,A与A′两点均在抛物线y=ax2+bx+c上,且这条抛物线与y轴的交点的纵坐标为-6,求这条抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省连云港市中考数学原创试卷大赛(16)(解析版) 题型:解答题

(2008•南通)已知双曲线y=与直线y=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线y=于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值;
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省杭州市萧山区中考模拟数学试卷(靖江镇中 董巨江等)(解析版) 题型:解答题

(2008•南通)已知双曲线y=与直线y=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线y=于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值;
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.

查看答案和解析>>

科目:初中数学 来源:2008年江苏省南通市中考数学试卷(解析版) 题型:解答题

(2008•南通)已知点A(-2,-c)向右平移8个单位得到点A′,A与A′两点均在抛物线y=ax2+bx+c上,且这条抛物线与y轴的交点的纵坐标为-6,求这条抛物线的顶点坐标.

查看答案和解析>>

同步练习册答案