精英家教网 > 初中数学 > 题目详情

【题目】如图,点B(33)在双曲线 (x>0)上,点D在双曲线 (x<0)上,点A和点C分别在x轴,y轴的正半轴上,且点ABCD构成的四边形为正方形.

1k的值;

3求点A的坐标.

【答案】1k9;(2A的坐标是(10).

【解析】试题分析:1)把B的坐标代入求出即可;
2)设求出DDMx轴于M,过BBNx轴于N证△ADM≌△BAN,推出求出,求出的值即可.

试题解析:(1)∵点B(3,3)在双曲线上,

k=3×3=9

(2)B(3,3)

BN=ON=3

D在双曲线上,

DDMx轴于M,过BBNx轴于N

∵四边形ABCD是正方形,

∴∠ADM=BAN

在△ADM和△BAN中,

∴△ADM≌△BAN(AAS)

OA=32=1

即点A的坐标是(1,0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,点轴上,若要使最小,则点的坐标为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半径为6cm的⊙O中,点A是劣弧BC的中点,点D是优弧BC上一点,且∠D=30°,下列四个结论:①OABC;BC=6cm;sinAOB=④四边形ABOC是菱形.其中正确结论的序号是( )

A. ①③ B. ①②③④ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,已知边上一点,平分,分别交于点,连接.

1)若,求的度数;

2)若,求证.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点QQO⊥BD,垂足为O,连接OA、OP.

(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?

(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;

(3)在平移变换过程中,设y=SOPB,BP=x(0≤x≤2),求yx之间的函数关系式,并求出y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠ABC=72°.

(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);

(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装80台空调,乙安装队提前一天开工,最后与甲安装队恰好同时完成安装任务.已知甲队比乙队平均每天多安装2台空调,求甲、乙两个安装队平均每天各安装多少台空调.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.

(1)求证:AB是O的切线;

(2)若CF=4,DF=,求⊙O的半径r及sinB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是___

【答案】-3.

【解析】

解:x=1是一元二次方程的根,∴12+k×1-3=0,∴k=2,∴x2+2x-3=0,∴(x+3)(x-1)=0,∴x1=-3,x2=1.故答案为:-3.

型】填空
束】
19

【题目】如图ABCAB=8,AC=6,AD=12,DBC的延长线上ACD∽△BADBD的长

查看答案和解析>>

同步练习册答案