精英家教网 > 初中数学 > 题目详情
16.阅读下列材料,然后回答问题:
在进行二次根式运算时,我们有时会碰上如$\frac{5}{\sqrt{3}}$、$\frac{2}{\sqrt{3}+1}$这样的式子,其实我们还可以将其进一步化简:$\frac{5}{\sqrt{3}}$=$\frac{5×\sqrt{3}}{\sqrt{3}×\sqrt{3}}$=$\frac{5}{3}$$\sqrt{3}$;
$\frac{2}{\sqrt{3}+1}$=$\frac{2×(\sqrt{3-1)}}{(\sqrt{3}+1)(\sqrt{3-1)}}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3})^{2}-1}$=$\sqrt{3}$-1.
以上这种化简过程叫做分母有理化.
$\frac{2}{\sqrt{3}+1}$还可以用以下方法化简:
$\frac{2}{\sqrt{3}+1}$=$\frac{3-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3})^{2}-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{\sqrt{3+1}}$=$\sqrt{3}$-1.
(1)请任用其中一种方法化简:
①$\frac{4}{\sqrt{15}-\sqrt{11}}$;
②$\frac{2}{\sqrt{2n-1}+\sqrt{2n+1}}$(n为正整数);
(2)化简:$\frac{2}{\sqrt{3}+1}$+$\frac{2}{\sqrt{5}+\sqrt{3}}$+$\frac{2}{\sqrt{7}+\sqrt{5}}$+…$\frac{2}{\sqrt{101}+\sqrt{99}}$.

分析 (1)根据阅读材料中的方法将各式化简即可;
(2)原式分母有理化后,合并即可得到结果.

解答 解:(1)①原式=$\frac{15-11}{\sqrt{15}-\sqrt{11}}$=$\frac{(\sqrt{15})^{2}-(\sqrt{11})^{2}}{\sqrt{15}-\sqrt{11}}$=$\frac{(\sqrt{15}+\sqrt{11})(\sqrt{15}-\sqrt{11})}{\sqrt{15}-\sqrt{11}}$=$\sqrt{15}$+$\sqrt{11}$;
②原式=$\frac{(2n+1)-(2n-1)}{\sqrt{2n-1}+\sqrt{2n+1}}$=$\frac{(\sqrt{2n+1})^{2}-(\sqrt{2n-1})^{2}}{\sqrt{2n-1}+\sqrt{2n+1}}$=$\frac{(\sqrt{2n+1}+\sqrt{2n-1})(\sqrt{2n+1}-\sqrt{2n-1})}{\sqrt{2n-1}+\sqrt{2n+1}}$=$\sqrt{2n+1}$-$\sqrt{2n-1}$;
(2)原式=$\frac{2(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$+$\frac{2(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}$+…+$\frac{2(\sqrt{101}-\sqrt{99})}{(\sqrt{101}+\sqrt{99})(\sqrt{101}-\sqrt{99})}$=$\sqrt{3}$-1+$\sqrt{5}$-$\sqrt{3}$+…+$\sqrt{101}$-$\sqrt{99}$=$\sqrt{101}$-1.

点评 此题考查了分母有理化,弄清阅读材料中的解题方法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.解关于x的方程:ax+b2=bx+a2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.为了考察甲、乙两种小麦的长势,分别从中随机抽取l0株麦苗,测得苗高(单位:cm)如表:
12131415101613111511
111617141319681016
(1)分别计算两种小麦的平均苗高;
(2)哪种小麦的长势比较整齐?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.若$\frac{1}{5}$x2ym-1与2xn+1y2可以合并成一个项,求m-n+(m-n)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知直线y1=2x+2及直线y2=-x+5,.
(1)直线y2=-x+5与y轴的交点坐标为(0,5).
(2)在所给的平面直角坐标系(如图)中画出这两条直线的图象;
(3)求这两条直线以及x轴所围成的三角形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知ABCD是平行四边形,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,BC⊥AC,AB⊥BD,且BC=4,AC=3,AB=5,BD=12,AD=13,则点D到AB的距离是12,点A到BC的距离是3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图:矩形ABCD中,AB=2,BC=5,E、G分别在AD、BC上,且DE=BG=1.
(1)判断△BEC的形状,并说明理由?
(2)判断四边形EFGH是什么特殊四边形?并证明你的判断.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简,再求值:
2($\frac{1}{4}$ab-$\frac{1}{2}$b2)-$\frac{1}{2}$(ab-a2)+3(b2-$\frac{1}{2}$a2),其中a=-1,b=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案