精英家教网 > 初中数学 > 题目详情
13.如图,线段AB的坐标分别是A(2,4)、B(8,2),以原点O为位似中心,将线段AB缩小后得线段A′B′.若A点的对应点A′的坐标为(-1,-2),则点B的对应点B′的坐标是(  )
A.(-4,-1)B.(-1,-4)C.(5,-4)D.(-5,-4)

分析 利用位似图形的性质得出两图形的位似比进而得出B′点坐标.

解答 解:∵线段AB的坐标分别是A(2,4)、B(8,2),以原点O为位似中心,将线段AB缩小后得线段A′B′.A点的对应点A′的坐标为(-1,-2),
∴点B的对应点B′的坐标是:(-4,-1).
故选:A.

点评 此题主要考查了位似图形的性质,得出两图形的位似比是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.已知:如图,AB为半圆O的直径,C、D是半圆O上的两点,若直径AB的长为4,且BC=2,∠DAC=15°.
(1)求∠DAB的度数;
(2)求图中阴影部分的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知在△ABC中,AC=BC,AC⊥BC于点C,过点C作直线EF∥AB,点D在直线EF上,连接BD,过点D作GD⊥BD,交直线AC于点H,连接BG.
(1)如图1所示,当点D在射线CF上,点H在射线AC上时,连接BH,过点D作MD⊥CD,交CB的延长线于点M.求证:∠GBH+∠G=∠M;
(2)如图2所示,当点D在射线CE上,点H在射线CA上时,试判断并证明DH与BD之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:-3-2+|1-$\sqrt{3}$|-$\sqrt{8}$×$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图已知:AB=AC.DB=DC,∠ABD=∠ACD.试判断直线AD、BC的位置关系并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如果$\sqrt{x(x-5)}$=$\sqrt{x}$•$\sqrt{x-5}$成立,则(  )
A.x≥5B.0≤x≤5C.x≥0D.x为任意实数

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.
(1)求证:DF是⊙O的切线;
(2)若CF=2,DF=2$\sqrt{3}$,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,正方形OABC的边OA、OC在坐标轴上,点B的坐标为(-4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).
(1)∠PBD的度数为45°,点D的坐标为(t,t)(用t表示);
(2)在P、Q的运动过程中,直线OD的解析式发生变化吗?如果不变,请直接写出直线OD的解析式;
(3)探索△POE周长是否随时间t的变化而变化,若变化,说明理由;若不变,试求这个定值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.先化简,再求代数式(1-$\frac{3}{x+2}$)÷$\frac{{x}^{2}-1}{x+2}$的值,其中x=4sin45°-2cos60°.

查看答案和解析>>

同步练习册答案