【题目】成都市为了扎实推进精准扶贫工作,出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种、4种和5种帮扶措施的贫困户分别称为A,B,C,D类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成如图两幅不完整的统计图.请根据图中信息,回答下列问题:
(1)本次抽样调查了多少户贫困户?
(2)成都市共有9100户贫困户,请估计至少得到4种帮扶措施的大约有多少户?
(3)2020年是精准扶贫攻关年,为更好地做好工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行试点帮扶,请用树状图或列表法求出恰好选中乙和丙的概率.
【答案】(1)500户;(2)3640户;(3)树状图见解析,
【解析】
(1)由A类别户数除以其对应百分比可得答案;
(2)至少得到4种帮扶措施即C或D,总数量乘以C和D对应百分比的和,即可得到答案;
(3)画树状图或列表将所有等可能的结果列举出来,利用概率公式求解即可.
解:(1)本次抽样调查的总户数为260÷52%=500(户);
(2)抽查B类贫困户所占本次抽样调查的总户数的百分数为: ×100%=8%,
抽查C类贫困户所占本次抽样调查的总户数的百分数为:1﹣52%﹣16%﹣8%=24%,
估计至少得到4项帮扶措施的大约有9100×(24%+16%)=3640(户);
(3)画树状图如下:
由树状图知共有12种可能结果,其中恰好选中乙和丙的有2种结果,
所以恰好选中乙和丙的概率为= .
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD是边BC上的中线,BE⊥AC于点E,交AD于点H过点C作CF∥AB交BE的延长线于点F.
(1)求证:△ABH∽△BFC;
(2)求证:BH2=HEHF;
(3)若AB=2,∠BAC=45°,求BH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.
收集教据:现随机抽取了初一年级名同学的“创文知识竞赛”成绩,分数如下(单位:分):
整理分析数据:
成绩(单位:分) | 频数(人数) |
(1)请将图表中空缺的部分补充完整;
(2)学校决定表彰“创文知识竞赛”成绩在分及其以上的同学.根据上面统计结果估计该校初一年级人中,约有多少人将获得表彰;
(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=﹣x﹣2与x轴,y轴分别交于点D,C.点G,H是线段CD上的两个动点,且∠GOH=45°,过点G作GA⊥x轴于A,过点H作HB⊥y轴于B,延长AG,BH交于点E,则过点E的反比例函数y=的解析式为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市各学校积极响应上级“停课不停教、修课不停学”的要求,开展了空中在线教学.其校就“网络直播课”的满意度进行了随机在线问卷调在,调在结果分为四类: A.非常满意;B.很满意;C.一般;D.不满意,将收集到的信息进行了统计,绘制成如下不完整的统计表和统计图(如图所示).请你根据统计图表所提供的信息解答下列问题:
(1)接受问卷调查的学生共有__ _人; ; ;
(2)补全条形统计图;
频数分布统计表
类别 | 频数 | 频率 |
(3)若该校共有学生人,请你根据上述调查结果,估计该校对“网络直播课”满意度为类和类的学生共有多少人;
(4)为改进教学,学校决定从选填结果是类的学生中,选取甲、乙、丙、丁四人,随机抽取两名同学参与网络座谈会,求甲、乙两名同学同时被抽中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=:
(1)求反比例函数和直线的函数表达式;
(2)求△OPQ的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边△EFG,设E点移动距离为x(0<x<6).
(1)∠DCB= 度,当点G在四边形ABCD的边上时,x= ;
(2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x的值;
(3)当2<x<6时,求△EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于为半径作弧,两弧交于点M,N;②作直线MN,且恰好经过点A,与CD交于点E,连接BE,则下列说法错误的是( )
A.B.C.若AB=4,则D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com