精英家教网 > 初中数学 > 题目详情
13.先化简再求值:$\frac{3x-3}{x^2-1}$÷$\frac{3x}{x+1}$-$\frac{1}{x-1}$,已知x满足x2-x-1=0.

分析 首先把已知的分式分子分母分解因式,把除法转化为乘法,计算乘法,然后计算分式的减法即可化简,然后代入求解即可.

解答 解:原式=$\frac{3(x-1)}{(x+1)(x-1)}$•$\frac{x+1}{3x}$-$\frac{1}{x-1}$
=$\frac{1}{x}$-$\frac{1}{x-1}$
=$\frac{x-1-x}{x(x-1)}$
=-$\frac{1}{{x}^{2}-x}$,
∵x2-x-1=0,
∴x2-x=1,
∴原式=-1.

点评 此题主要考查了方程解的定义和分式的运算,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠EAF.又AG=AE,AF=AF∴△GAF≌△EAF.∴GF=EF,故DE+BF=EF.
(2)方法迁移:
如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=$\frac{1}{2}$∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=$\frac{1}{2}$∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.在分式$\frac{a}{b+c}$中,a,b,c都缩小到原来的一半,则分式的值是原来的(  )
A.1倍B.一半C.2倍D.4倍

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AB于点E.
(1)求证:∠E=∠C;
(2)若⊙O的半径为3,AD=2,试求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.若点M(m,1)在一次函数y=x-2的图象上,则m=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.先化简,后求值:($\frac{x+2}{{x}^{2}-2x}-\frac{x-1}{{x}^{2}-4x+4}$)$÷\frac{x-4}{x}$;x=5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图所示,直线AB是一次函数y=kx+b的图象.若AB=$\sqrt{5}$,则函数解析式为y=2x+2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.当|k-2b|+$\sqrt{k+b-3}$=0时,直线y=kx+b经过点(  )
A.(-1,-1)B.(-1,1)C.(-1,-3)D.(-1,3)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,D是等边△ABC边AB上的一点,且AD:DB=1:3,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=5:7.

查看答案和解析>>

同步练习册答案