分析 首先把已知的分式分子分母分解因式,把除法转化为乘法,计算乘法,然后计算分式的减法即可化简,然后代入求解即可.
解答 解:原式=$\frac{3(x-1)}{(x+1)(x-1)}$•$\frac{x+1}{3x}$-$\frac{1}{x-1}$
=$\frac{1}{x}$-$\frac{1}{x-1}$
=$\frac{x-1-x}{x(x-1)}$
=-$\frac{1}{{x}^{2}-x}$,
∵x2-x-1=0,
∴x2-x=1,
∴原式=-1.
点评 此题主要考查了方程解的定义和分式的运算,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (-1,-1) | B. | (-1,1) | C. | (-1,-3) | D. | (-1,3) |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com