精英家教网 > 初中数学 > 题目详情
如图,已知直线l:,过点A(0,1)作y轴的垂线 交直线l于点B,过点B作直线l的垂线交y轴于点A1;过 点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为
A.(0,64)B.(0,128) C.(0,256) D.(0,512)
C.

试题分析:∵直线l的解析式为;y=x,
∴l与x轴的夹角为30°,
∵AB∥x轴,
∴∠ABO=30°,
∵OA=1,
∴OB=2,
∴AB=
∵A1B⊥l,
∴∠ABA1=60°,
∴A1O=4,
∴A1(0,4),
同理可得A2(0,16),

∴A4纵坐标为44=256,
∴A4(0,256).
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.
(1)求一次函数和反比例函数的解析式;
(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:
方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;
(总费用=广告赞助费+门票费)
方案二:购买门票方式如图所示.
解答下列问题:
(1)方案一中,y与x的函数关系式为     
方案二中,当0≤x≤100时,y与x的函数关系式为     
当x>100时,y与x的函数关系式为        
(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;
(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图是温度计的示意图,左边的刻度表示摄氏温度,右边的刻度表示华氏温度,华氏温度y(℉)与摄氏温度x(℃)之间的函数关系式为         .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元。
(1)设运送这批货物的总费用为万元,这列货车挂A型车厢节,试写出之间的函数关系式;
(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?
(3)在上述方案中,哪种方案运费最省,最少运费为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知正比例函数y=3x的图象与反比例函数y=的图象交于点A(1,m)和点B.

(1)求m的值和反比例函数的解析式.
(2)观察图象,直接写出使正比例函数的值大于反比例函数的值的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

经过点(1,1)的直线l:与反比例函数G1:的图象交于点,B(b,-1),与y轴交于点D.
(1)求直线l对应的函数表达式及反比例函数G1的表达式;
(2)反比例函数G2::
①若点E在第一象限内,且在反比例函数G2的图象上,若EA=EB,且△AEB的面积为8,求点E的坐标及t值;
②反比例函数G2的图象与直线l有两个公共点M,N(点M在点N的左侧),若,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列函数中,图象经过原点的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知平面上四点A(0,0),B(8,0),C(8,6),D(0,6),直线y=mx-3m+2(将四边形ABCD分成面积相等的两部分,则m的值为            

查看答案和解析>>

同步练习册答案