精英家教网 > 初中数学 > 题目详情
已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,2),C(0,2),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S.
(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;
(2)当纸片重叠部分的图形是四边形时,求t的取值范围;
(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.

【答案】分析:(1)求∠OAB的度数,我们可根据A、B的坐标来求,根据tan∠OAB=B的纵坐标的绝对值:A、B横坐标的差的绝对值,可得出∠OAB的度数.得出的∠BAO是60°后,以及折叠得到的AT=A′T,那么三角形A′AT是等边三角形,且三边长均为10-t.求面积就要有底边和高,我们可以AA′为底边,那么PT就是高,AA′=10-t,那么关键是PT的值,已知了∠BAT的度数,我们可以用AT的长以及∠BAT的正弦函数表示出PT的长,由此可根据三角形的面积公式得出关于S,t的函数关系式.此时AT即AA′的最大值为AB的长,也就是4,因此AT的取值范围是0<AT≤4,那么t的取值范围就是6≤t<10;
(2)当重叠部分是四边形时,那么此时A′应该在AB的延长线上,那么此时AA′的最小值应该是AB的长即4,最大的值应该是当P与B重合时AA′的值即8,由于三角形ATA′是个等边三角形,那么AT的取值范围就是4<AT<8,那么t的取值就应是2<t<6;
(3)可分成三种情况进行讨论:
①当A′在AB上时,即当6≤t<10时,可根据(1)的函数来求出此时S的最大值;
②当A′在AB延长线上但P在AB上时,即当2≤t<6时,此时重合部分的面积=三角形AA′T的面积-上面的小三角形的面积,根据AT和AB的长,我们可得出A′B的长,然后按(1)的方法即可得出上面的小三角形的面积,也就可以求出重合部分的面积;
③当A′在AB延长线上且P也在AB延长线上时,即当0<t≤2时,重合部分的面积就是三角形EFT的面积(其中E是TA′与CB的交点,F是TA与CB的交点)那么关键是求出BF,BE的值,知道了AT的长,也就知道了AP,A′P的长,根据AB=4我们不难得出BP的长,有了BP的长就可以求出A′B,BE的长,在直角三角形BPE中,可根据∠PBF的度数,和BP的长,来表示出BF的长,这样我们就能表示出EF的长了,又知道EF边上的高是OC的长,因此可根据三角形的面积来求出S的值.
然后综合三种情况判断出是否有S的最大值.
解答:解:(1)∵A,B两点的坐标分别是A(10,0)和B(8,2),
∴tan∠OAB==
∴∠OAB=60°,
当点A′在线段AB上时,
∵∠OAB=60°,TA=TA′,
∴△A′TA是等边三角形,且TP⊥AA′,
∴TP=(10-t)sin60°=(10-t),A′P=AP=AT=(10-t),
∴S=S△ATP=A′P•TP=(10-t)2
当A´与B重合时,AT=AB==4,
所以此时6≤t<10;

(2)当点A′在线段AB的延长线上,且点P在线段AB(不与B重合)上时,
纸片重叠部分的图形是四边形(如图①,其中E是TA′与CB的交点),
假设点P与B重合时,AT=2AB=8,点T的坐标是(2,0),由(1)中求得当A´与B重合时,T的坐标是(6,0),
则当纸片重叠部分的图形是四边形时,2<t<6;

(3)S存在最大值.
①当6≤t<10时,S=(10-t)2
在对称轴t=10的左边,S的值随着t的增大而减小,
∴当t=6时,S的值最大是2
②当2≤t<6时,由图①,重叠部分的面积S=S△A′TP-(S△A′EB-S△PFB),
∵△A′EB的高是A′B•sin60°,
∴S=(10-t)2-(10-t-4)2×+-4)2×=(-t2+2t+30)=-(t-2)2+4
当t=2时,S的值最大是4
③当0<t≤2,即当点A′和点P都在线段AB的延长线上是(如图②,其中E是TA´与CB的交点,F是TP与CB的交点),
∵∠EFT=∠FTP=∠ETF,四边形ETAB是等腰梯形,
∴EF=ET=AB=4,
∴S=EF•OC=×4×2=4
综上所述,S的最大值是4,此时t的值是t=2.
点评:这是试卷的压轴题,考查知识点较多,是代数与几何结合的综合题,其中有分类思想的渗透.
主要问题是在解题中计算三角形面积时没有除以2,或分类情况不全面,或对于取值范围的处理不到位.特别是认为只存在一个t的值使得面积最大,导致失分较多.更多是缺乏对复杂问题的分析能力,导致不会做.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,2
3
),C(0,2
3
),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S.
(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;
(2)当纸片重叠部分的图形是四边形时,求t的取值范围;
(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直角梯形纸片OABC在平面直角坐标系中的位置如图1所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,2
3
),C(0,2
3
),点T在线段OA上(不与线段点重合),将纸片沿过T点的直线折叠,使点A落在射线AB上(记为点A'),折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图2中的阴影部分)的面积为S;
(1)直接写出∠OAB的度数;
(2)当纸片重叠部分的图形是四边形时,直接写出t的取值范围;
(3)求S关于t的解析式及S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直角梯形纸片OABC中,两底边OA=10,CB=8,垂直于底的腰OC=2
3
,点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点OT=t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;
(1)求∠OAB的度数;
(2)求当点A′在线段AB上时,S关于t的函数关系式;
(3)当纸片重叠部分的图形是四边形时,求t的取值范围;
(4)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直角梯形纸片OABC在平面直角坐标系中的位置如图①所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,2
3
),C(0,2
3
),点P在线段OA上(不与O、A重合),将纸片折叠,使点A落在射线AB上(记为点A’),折痕PQ与射线AB交于点Q,设OP=x,折叠后纸片重叠部分的面积为y.(图②供探索用)
(1)求∠OAB的度数;
(2)求y与x的函数关系式,并写出对应的x的取值范围;
(3)y存在最大值吗?若存在,求出这个最大值,并求此时x的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2011-2012年北京市三帆中学九年级上学期期中测试数学卷 题型:解答题

已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,),C(0,),点T在线段OA上(不与线段端点重合),将纸片沿过T点的直线折叠,使点A落在射线AB上(记为点A′),折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;

【小题1】(1)直接写出∠OAB的度数;
【小题2】(2)当纸片重叠部分的图形是四边形时,直接写出t的取值范围;
【小题3】(3)求S关于t的解析式及S的最大值.

查看答案和解析>>

同步练习册答案