精英家教网 > 初中数学 > 题目详情

已知关于x的一元二次方程x2-(R+r)x+数学公式d2=0没有实数根,其中R,r分别为两圆半径,d为两圆的圆心距,你能根据条件确定两圆的位置关系吗?请说明理由.

解:两圆外离,理由如下:
∵一元二次方程x2-(R+r)x+d2=0没有实数根,
∴b2-4ac<0
即:[-(R+r)]2-4×d2<0
∴(R+r)2-d2<0
∴(R+r+d)(R+r-d)<0
∵R+r+d>0
∴R+r-d<0
即d>R+r
∴两圆外离.
分析:首先利用根的判别式得到(R+r)2-d2<0,然后因式分解,得到R+r-d<0,进一步得到d>R+r,从而判断两圆外离.
点评:本题考查了圆与圆的位置关系及根的判别式,利用根的判别式得到d与两半径之间的不等关系是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案