精英家教网 > 初中数学 > 题目详情

已知:如图,抛物线y=x2-2x+3与y轴交于点A,顶点是点P,过点P作PB⊥x轴于点B.平移该抛物线,使其经过A、B两点.
(1)求平移后抛物线的解析式及其与x轴另一交点C的坐标;
(2)设点D是直线OP上的一个点,如果∠CDP=∠AOP,求出点D的坐标.

解:(1)令x=0,则y=3,
∴点A的坐标为(0,3),
∵y=x2-2x+3=(x-1)2+2,
∴顶点P(1,2)、B(1,0),
设平移后抛物线的解析式为y=x2+bx+c,
将点A(0,3)、B(1,0)的坐标代入得,
解得
∴平移后抛物线的解析式为抛物线y=x2-4x+3,
令y=0,则x2-4x+3=0,
解得,x1=1,x2=3,
所以,点C(3,0);

(2)如图,直线OP过P(1,2),
所以,直线OP解析式为y=2x,
①点D在第一象限时,∵∠CD1P=∠AOP,
∴CD1∥y轴,
∴CD1⊥x轴,
∴点D的横坐标与点C的横坐标相同,都是3,
x=3时,y=2×3=6,
∴点D1(3,6),
②点D在第三象限时,
∵∠CD1P=∠AOP,∠CD2P=∠AOP,
∴∠CD1P=∠CD2P,
∴CD1=CD2,且CD2=CD1=6,
设D2(x,2x),则=6,
整理得,5x2-6x-27=0,
解得x1=3(为点D1,舍去),x2=-
所以,点D1(3,6)、D2(-,-).
分析:(1)根据抛物线解析式求出点A、B、P的坐标,再根据平移变换不改变抛物线的形状,设平移后的抛物线解析式为y=x2+bx+c,然后把点A、B的坐标代入求出b、c的值,从而得到平移后的抛物线解析式,再令y=0,解关于x的一元二次方程即可得到点C的坐标;
(2)先求出直线OP的解析式,然后分点D在第一象限时,根据内错角相等两直线平行求出CD1∥y轴可得CD1⊥x轴,从而求出点D的横坐标坐标是3,然后代入直线OP的解析式,计算即可求出点D1的坐标;点D在第三象限时,求出∠CD1P=∠CD2P,根据等角对等边可得CD1=CD2,设D2(x,2x),然后利用勾股定理列式计算求出x的值,即可得解.
点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,平移只改变只改变图形的位置不改变图形的形状与大小的性质,平行线的判定与性质,等角对等边的性质,综合题,但难度不大,(2)要注意分情况讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+bx+c与x轴交于A、B两点,它们的横坐标分别为-1和3,精英家教网与y轴交点C的纵坐标为3,△ABC的外接圆的圆心为点M.
(1)求这条抛物线的解析式;
(2)求图象经过M、A两点的一次函数解析式;
(3)在(1)中的抛物线上是否存在点P,使过P、M两点的直线与△ABC的两边AB、BC的交点E、F和点B所组成的△BEF和△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宁化县质检)已知:如图,抛物线y=ax2+bx+c与x轴交于点A(1-
3
,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.
(1)求原抛物线的解析式;
(2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由.
(3)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比
5
-1
2
(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:
5
≈2.236
6
≈2.449
,结果精确到0.001)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)若点M在抛物线上,且△ABC与△ABM的面积相等,直接写出点M的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与线段AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出直线l的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,抛物线y=x2+px+q与x轴相交于A、B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为点P,直线PC与x轴的交点D恰好与点A关于y轴对称.
(1)求p、q的值.
(2)在题中的抛物线上是否存在这样的点Q,使得四边形PAQD恰好为平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.
(3)连接PA、AC.问:在直线PC上,是否存在这样点E(不与点C重合),使得以P、A、E为顶点的三角形与△PAC相似?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案