精英家教网 > 初中数学 > 题目详情
平面直角坐标第xoy中,A点的坐标为(0,5).B、C分别是x轴、y轴上的两个动点,C从A出发,沿y轴负半轴方向以1个单位/秒的速度向点O运动,点B从O出发,沿x轴正半轴方向以1个单位/秒的速度运动.设运动时间为t秒,点D是线段OB上一点,且BD=OC.点E是第一象限内一点,且AEDB.
(1)当t=4秒时,求过E、D、B三点的抛物线解析式.
(2)当0<t<5时,(如图甲),∠ECB的大小是否随着C、B的变化而变化?如果不变,求出它的大小.
(3)求证:∠APC=45°
(4)当t>5时,(如图乙)∠APC的大小还是45°吗?请说明理由.
(1);(2)∠ECB的大小不变.90°;(3)证明见解析;(4)∠APC>45°.

试题分析:(1)当t=4时,知AC=OB=4,进而知OC=1,由BD=OC,AE∥DB,AE=BD可求AE=DB=OC=1,点E、点D、点B的坐标即可确定。再设出抛物线的解析式y=ax2+bx+c,将三点坐标代入即可求出a、b、c的值;
(2)连接CE,可证∠ECB=90°;
(3)由(2)可知:△ECB是等腰直角三角形,继而可证四边形ADBE是平行四边形,从而∠APC=∠EBC=45°;
(4)如图,在第二象限取点F,作AF∥BD,AF=BD,连接CF、BF.易得Rt△ACF≌Rt△OBC,再证△BCF是等腰直角三角形,由三角形的一个外角大于与它不相邻的内角知∠APC>45°.
(1)当t=4秒时,AC=OB=4,由A(0,5)得C(0,1),即OC=1.
又BD=OC,AE DB,
∴AE=DB=OC=1.
∴E(1,5)B(4,0),D(3,0).
设过E、D、B三点的抛物线解析式为y="ax2+bx+c" ,则有
,解得:
∴抛物线解析式为
(2)(2)∠ECB的大小不变。
连接CE。易得Rt△ACE≌Rt△OBC(SAS)
∴CE=CB,∠ACE=∠OBC,∠AEC=∠OCB.
又∠ACE+∠AEC=90°,
∴∠ACE+∠OCB=90°
,∴∠ECB=90°.
(3)由(2)知,CE=CB,∠ECB=90°,
∴△ECB是等腰直角三角形.
∴∠EBC=45°,
又AEDB,
∴四边形ADBE是平行四边形.
∴AB∥EB.
∴∠APC=∠EBC=45°.
(4)当t>5时,∠APC>45°,理由如下:
如图,在第二象限取点F,作AFBD,连接CF、BF.

易得Rt△ACF≌Rt△OBC(SAS)
∴CF=CB,∠1=∠2.
又∠1+∠3=90°。∴∠2+∠3=90°即△BCF是等腰直角三角形.
∴∠CBF=45°,又∠APC>∠CBF,
∴∠APC>45°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图①,在□ABCD中,对角线AC⊥AB,BC=10,tan∠B=2.点E是BC边上的动点,过点E作EF⊥BC于点E,交折线AB-AD于点F,以EF为边在其右侧作正方形EFGH,使EH边落在射线BC上.点E从点B出发,以每秒1个单位的速度在BC边上运动,当点E与点C重合时,点E停止运动,设点E的运动时间为t()秒.
(1)□ABCD的面积为          ;当t=      秒时,点F与点A重合;
(2)点E在运动过程中,连接正方形EFGH的对角线EG,得△EHG,设△EHG与△ABC的重叠部分面积为S,请直接写出S与t的函数关系式以及对应的自变量t的取值范围;
(3)作点B关于点A的对称点Bˊ,连接CBˊ交AD边于点M(如图②),当点F在AD边上时,EF与对角线AC交于点N,连接MN得△MNC.是否存在时间t,使△MNC为等腰三角形?若存在,请求出使△MNC为等腰三角形的时间t;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其中A点坐标为(-1,0), 点C(0,5),点D(1,8)在抛物线上,M为抛物线的顶点.求

(1)抛物线的解析式;
(2)求△MCB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,把边长分别是为4和2的两个正方形纸片OABC和OD′E′F′叠放在一起.
(1)操作1:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转45°得到正方形ODEF,如图2,连接AD、CF,线段AD与CF之间有怎样的数量关系?试证明你的结论;
(2)操作2,如图2,将正方形ODEF沿着射线DB以每秒1个单位的速度平移,平移后的正方形ODEF设为正方形PQMN,如图3,设正方形PQMN移动的时间为x秒,正方形PQMN与正方形OABC的重叠部分面积为y,直接写出y与x之间的函数解析式;
(3)操作3:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转90°得到正方形OHKL,如图4,求△ACK的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资40万元用于该产品的广告促销,已知该产品的本地销售量y1(万台)与本地的广告费用x(万元)之间的函数关系满足,该产品的外地销售量y2(万台)与外地广告费用t(万元)之间的函数关系可用如图所示的抛物线和线段AB来表示,其中点A为抛物线的顶点.

(1)结合图象,写出y2(万台)与外地广告费用t(万元)之间的函数关系式;
(2)求该产品的销售总量y(万台)与外地广告费用t(万元)之间的函数关系式;
(3)如何安排广告费用才能使销售总量最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC =" 8" cm,BC =" 6" cm,EF =" 9" cm。
如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动。当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移。DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)。解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由。
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由。(图(3)供同学们做题使用)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,抛物线y=ax2+bx+c与x轴交于点(1,0),对称轴为x=1,则下列结论中正确的是(  )
A.
B.当时,y随x的增大而增大
C.
D.是一元二次方程的一个根

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x2+1与y=的交点的横坐标x0的取值范围是(  )
A.0<x0<1
B.1<x0<2
C.2<x0<3
D.﹣1<x0<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

点A(2,y1)、B(3,y2)是二次函数y=x2-2x+1的图象上两点,则y1与y2的大小关系为y1________y2(填“>”、“<”、“=”).

查看答案和解析>>

同步练习册答案