精英家教网 > 初中数学 > 题目详情

如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=________度.

72
分析:欲求∠CPB,可根据菱形、线段垂直平分线的性质、对称等方面去寻求解答方法.
解答:解:先连接AP,
由四边形ABCD是菱形,∠ADC=72°,
可得∠BAD=180°-72°=108°,
根据菱形对角线平分对角可得:∠ADB=∠ADC=×72°=36°,∠ABD=∠ADB=36度.
EP是AD的垂直平分线,由垂直平分线的对称性可得∠DAP=∠ADB=36°,
∴∠PAB=∠DAB-∠DAP=108°-36°=72度.
在△BAP中,∠APB=180°-∠BAP-∠ABP=180°-72°-36°=72度.
由菱形对角线的对称性可得∠CPB=∠APB=72度.
点评:本题开放性较强,解法有多种,可以从菱形、线段垂直平分线的性质、对称等方面去寻求解答方法,在这些方法中,最容易理解和表达的应为对称法,这也应该是本题考查的目的.灵活应用菱形、垂直平分线的对称性,可使解题过程更为简便快捷.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为(  )
A、5B、10C、6D、8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,∠ABC=60°,E为AB边的中点,P为对角线BD上任意一点,AB=4,则PE+PA的最小值为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为
1
1
时,四边形AMDN是矩形;
           ②当AM的值为
2
2
时,四边形AMDN是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=
35
,BE=4,则tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,AE⊥BC,垂足为F,EC=1,∠B=30°,求菱形ABCD的周长.

查看答案和解析>>

同步练习册答案