精英家教网 > 初中数学 > 题目详情
8.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BD作垂线,垂足分别为点E、F,点O为AC的中点.
(1)当点P与点O重合时如图1,易证OE=OF(不需证明)
(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.

分析 (1)由△AOE≌△COF即可得出结论.
(2)图2中的结论为:CF=OE+AE,延长EO交CF于点G,只要证明△EOA≌△GOC,△OFG是等边三角形,即可解决问题.
图3中的结论为:CF=OE-AE,延长EO交FC的延长线于点G,证明方法类似.

解答 解:(1)∵AE⊥PB,CF⊥BP,
∴∠AEO=∠CFO=90°,
在△AEO和△CFO中,
$\left\{\begin{array}{l}{∠AEO=∠CFO}\\{∠AOE=∠COF}\\{AO=OC}\end{array}\right.$,
∴△AOE≌△COF,
∴OE=OF.
(2)图2中的结论为:CF=OE+AE.
    图3中的结论为:CF=OE-AE.
选图2中的结论证明如下:
延长EO交CF于点G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠EAO=∠GCO,
在△EOA和△GOC中,
$\left\{\begin{array}{l}{∠EAO=∠GCO}\\{AO=OC}\\{∠AOE=∠COG}\end{array}\right.$,
∴△EOA≌△GOC,
∴EO=GO,AE=CG,
在Rt△EFG中,∵EO=OG,
∴OE=OF=GO,
∵∠OFE=30°,
∴∠OFG=90°-30°=60°,
∴△OFG是等边三角形,
∴OF=GF,
∵OE=OF,
∴OE=FG,
∵CF=FG+CG,
∴CF=OE+AE.
选图3的结论证明如下:
延长EO交FC的延长线于点G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠AEO=∠G,
在△AOE和△COG中,
$\left\{\begin{array}{l}{∠AEO=∠G}\\{∠AOE=∠GOC}\\{AO=OC}\end{array}\right.$,
∴△AOE≌△COG,
∴OE=OG,AE=CG,
在Rt△EFG中,∵OE=OG,
∴OE=OF=OG,
∵∠OFE=30°,
∴∠OFG=90°-30°=60°,
∴△OFG是等边三角形,
∴OF=FG,
∵OE=OF,
∴OE=FG,
∵CF=FG-CG,
∴CF=OE-AE.

点评 本题考查四边形综合题、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于点B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4.现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与x轴的另一交点为E,其顶点为F,对称轴与x轴的交点为H.
(1)求a,c的值;
(2)连结OF,试判断△OEF是否为等腰三角形,并说明理由;
(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使以点P,Q,E为顶点的三角形与△POE全等?若存在,直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.到点P(-5,0)的距离等于4的点的轨迹是以P为圆心4为半径的圆.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.把多项式9a3-ab2分解因式的结果是a(3a+b)(3a-b).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.分解因式3m4-48=3(m2+4)(m+2)(m-2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:
 学生最喜欢的活动项目的人数统计表     
项目学生数(名)百分比
丢沙包2010%
打篮球60p%
跳大绳n40%
踢毽球4020%
根据图表中提供的信息,解答下列问题:
(1)m=200,n=80,p=30;
(2)请根据以上信息直接补全条形统计图;
(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.化简求值:$\frac{a}{{a}^{2}-4}$•$\frac{a+2}{{a}^{2}-3a}$-$\frac{1}{2-a}$,其中a=$\sqrt{2}$+3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列计算正确的是(  )
A.$\sqrt{a}$+$\sqrt{b}$=$\sqrt{ab}$B.(-a22=-a4C.(a-2)2=a2-4D.$\sqrt{a}$÷$\sqrt{b}$=$\sqrt{\frac{a}{b}}$(a≥0,b>0)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:如图,线段AD=10cm,AC=BD=7cm,E,F分别是AB,CD的中点,求EF的长.

查看答案和解析>>

同步练习册答案